MARKING SCHEME

JUNIOR CERTIFICATE EXAMINATION 2005

MATHEMATICS –HIGHER LEVEL – PAPER 2

GENERAL GUIDELINES FOR EXAMINERS

- 1. Penalties of three types are applied to candidates' work as follows
 - Blunders mathematical errors/omissions (-3)
 - Slips numerical errors (-1)
 - Misreadings (provided task is not oversimplified) (-1).

Frequently occurring errors to which these penalties must be applied are listed in the scheme. They are labelled B1, B2, B3,..., S1, S2,..., M1, M2,...etc. These lists are not exhaustive.

- 2. When awarding attempt marks, e.g. Att(3), note that
 - any *correct, relevant* step in a part of a question merits at least the attempt mark for that part
 - if deductions result in a mark which is lower than the attempt mark, then the attempt mark must be awarded
 - a mark between zero and the attempt mark is never awarded.
- 3. Worthless work is awarded zero marks. Some examples of such work are listed in the scheme and they are labelled as W1, W2,...etc.
- 4. The phrase "hit or miss" means that partial marks are not awarded the candidate receives all of the relevant marks or none.
- 5. The phrase "and stops" means that no more work is shown by the candidate.
- 6. Special notes relating to the marking of a particular part of a question are indicated by an asterisk. These notes immediately follow the box containing the relevant solution.
- 7. The sample solutions for each question are not intended to be exhaustive lists there may be other correct solutions.
- 8. Unless otherwise indicated in the scheme, accept the best of two or more attempts even when attempts have been cancelled.
- 9. The *same* error in the *same* section of a question is penalised *once* only.
- 10. Particular cases, verifications and answers derived from diagrams (unless requested) qualify for attempt marks at most.
- 11. A serious blunder, omission or misreading results in the attempt mark at most.
- 12. Do not penalise the use of a comma for a decimal point, e.g. €5.50 may be written as €5,50.

Part (a) Part (b) Part (c)		Question 1 10 (5,5) marks 20 (5,15) marks 20 (10,10)marks	Att (2,2) Att (2,5) Att(3,3)
Part (a)		10 (5, 5) marks	Att (2,2)
(i)	Ŕ	Find, correct to the nearest cm ² , the area of a disc of radius 11 cm.	120°
(ii)	Ł	Find, correct to the nearest cm ² , the area of the shaded region in the diagram.	
(a) (i)		5 marks	Att 2
(i)	Area o	of disc = $3.14 \times (11)^2$ = 3.14×121	

= $379 \cdot 94$ = 380 to nearest cm²

Blunders (-3)

- B1 Incorrect substitution into correct formula
- B2 Incorrect squaring
- B3 Incorrect relevant area formula with substitution.

Slips (-1)

- S1 Answer in terms of π
- S2 Fails to round off
- S3 Arithmetic slips to a max of -3

- A1 Correct formula with some substitution
- A2 $2\pi r$ with r substituted correctly

<u>(a) (ii)</u>				5 marks	Att 2
	(ii)	Shaded area	=	$379 \cdot 94 \div 3$	
			=	$126 \cdot 64 \text{ cm}^2$	
			=	127 cm^2	

* Accept candidates answer from (a) (i).

Blunders(-3)

- B1 Incorrect substitution into correct formula
- B2 Incorrect relevant area formula with some substitution
- B3 Error in use of 120°

Slips (-1)

- S1 Answer in terms of π
- S2 Fails to round off
- S3 Arithmetic slips to a max of -3

- A1 Correct formula but no substitution
- A2 Indicates division by 3
- A3 Indicates $\frac{120}{360}$ or equivalent

Part (b)	20 (5,15) marks	Att (2,5)
(i) (ii)	 A solid metal cylinder has height 20 cm and diameter 14 cm. <i>S</i> Find its curved surface area in terms of π. A hemisphere with diameter 14 cm is removed from the top of this cylinder, as shown. <i>S</i> Find the total surface area of the remaining solid in terms of π. 	

(b) (i	5 marks	Att 2
(i)	$CSA = 2\pi rh = 2\pi \times 7 \times 20 \text{or} \qquad 280\pi \text{ cm}^2.$	
	lers (-3)	
B1	r = 14	
B2	Incorrect relevant formula with some substitution	

Slips (-1)

- S1 Arithmetic slips to a max of -3
- S2 Answer not in terms of π

Attempts (2 marks)

- A1 Correct formula with some substitution
- A2 Volume of cylinder with fully correct substitution

(b) (ii)	15 marks	Att 5
(ii)	Total Surface Area = $280\pi + \pi r^2 + 2\pi r^2$ or = $280\pi + \pi 7^2 + 2\pi 7^2$ or	$\frac{280\pi + 3\pi r^2}{280\pi + 3\pi 7^2}$
	$= 427\pi \ \mathrm{cm}^2 .$	

Blunders (-3)

- B1 Each part calculated but not added
- B2 Omission of cylinder base
- B3 Incorrect relevant formula with substitution

Slips (-1)

- S1 Arithmetic slips to a max of -3
- S2 Answer not in required form (e.g. 1340.78)

Attempts (5 marks)

A1 Formula for area of base of cylinder or CSA of hemisphere with some substitution

Worthless (0)

W1 Volume of cylinder and /or hemisphere (with or without substitution)

Part (c)		20 (10,10) marks	Att (3,3)
	(i) A co	ne has radius x and height $3x$.	
	Ŕ	Find its volume in term of π and x .	
(ii)	A second con	e has twice the radius and half the height of t	he first cone.
	Ľ	Find the ratio of the volume of the second c	cone to the
		volume of the first.	

(c) (i)	10 marks	Att 3
(i)	$Volume = \frac{1}{3}\pi r^2 h$	
	$=\frac{1}{3}\pi x^2 3x$	
	or πx^3	

- Each incorrect substitution into correct formula B1
- B2 Incorrect related formula with substitution

Slips (-1)

Arithmetic slips to a max of -3 **S**1

- Attempts (3 marks)A1Diagram with x and/or 3x shownA2Solution with value assigned to x

Volume		$\frac{1}{3}\pi (2x)^2 \frac{3x}{2} \\ 2\pi x^3$
Ratio of volume of second	to first =	$= \frac{1}{3}\pi (2x)^2 \frac{3x}{2} : \frac{1}{3}\pi x^2 3x = 2\pi x^3 : \pi x^3 = 2:1$
Accept ratio in any order		

*

- B1 Each incorrect substitution into correct formula
- B2 Incorrect related formula with substitution
- B3 Volumes not expressed as a ratio
- B4 Ratio not simplified
- B5 $(2x)^2 = 2x^2$

Slips (-1)

- S1 Arithmetic slips to a max of -3
- A1 Correct formula with some substitution

- A2 Diagram with 2x and/or $\frac{3x}{2}$ shown
- A3 Ratio with value assigned to *x*

	QUESTION 2	
Part (a)	10(5,5) marks	Att(2,2)
Part (b)	25(5,10,5,5) marks	Att (2,3,2,2)
Part (c)	15 marks	Att 5
Part (a)	10 (5,5) marks	Att (2,2)
a (1, 4) and b	(-2, -1) are two points. \swarrow Find the slope of <i>ab</i> .	

(a) (i)	5 marks	Att 2
(i)	Slope $= \frac{y_2 - y_1}{x_2 - x_1} = \frac{-1 - 4}{-2 - 1} = \frac{-5}{-3}$ or $\frac{5}{3}$	

- B1 Incorrect slope formula and continues
- B2 Mixes both x and y in substitution
- B3 Substitutes correctly but slope not found

Slips (-1)

- S1 Incorrect sign after substitution
- S2 Arithmetic slips to a max of -3

Attempt (2 marks)

- A1 Writes slope formula with or without some substitution
- A2 Some attempt at difference of y's or difference of x's

(a) (ii)	5 marks	Att 2
	Or $y = mx + c$	
Equation	$y-4 = \frac{5}{3}(x-1)$ or $y-4 = \frac{-5}{-3}(x-1)$ $y = \frac{5}{3}x+c$	
<i>y</i> 1	$= \frac{5}{3}(x-2) \qquad \text{or } y-1 = \frac{-5}{-3}(x-2)4 = \frac{5}{3} \cdot 1 + c$	
	$c = 4 - \frac{5}{3}$	or $\frac{7}{3}$

* May find another point on *ab* (e.g. midpoint and continues)

Blunders (-3)

B1 Incorrect relevant formula and continues

- B2 Switches both *x* and *y* in substitution
- B3 Substitutes correctly for *x* and *y* but no slope

Slips (-1)

S1 Incorrect sign after substitution

Attempts (2 marks)

A1 Correct line formula and stops

Part (b)			25 (5,10,5,5) marks	Att (2,3,2,2)				
	L is the line $3x$	<i>L</i> is the line $3x - 4y + 7 = 0$ and contains the point <i>p</i> (-1, <i>h</i>).						
	M is the line $4x$	x + 3y	-24 = 0 and contains the point $q(k, 0)$.					
	(i)	(i) \swarrow Find the values of <i>h</i> and <i>k</i> .						
	(ii)	L and	<i>M</i> intersect at the point <i>r</i> .					
		Ŕ	Find the coordinates of <i>r</i> .					
	(iii)	Show	p, q, r, L and M on a coordinate diagram on g	graph paper.				
	(iv)	Ŕ	Prove that $\angle prq$ is a right angle.					

(b) (i)		5 marks	Att 2
(i)	3(-1) - 4h + 7 = 0	4k + 3(0) - 24 = 0	
	h = 1	k = 6	

- B1 Mixes *x* and *y* in substitution
- B2 Transposition error

Slips (-1)

S1 Arithmetic slips to a max of -3 e.g. $3(0) \neq 0$

Attempts (2 marks)

A1 Some attempt at substitution

(b) (ii)	10 marks	Att 3
(ii)	$3x - 4y + 7 = 0 \implies 9x - 12y + 21 = 0$	
	$4x + 3y - 24 = 0 \Longrightarrow \underline{16x + 12y - 96} = 0$	
	$25x -75 = 0 \qquad \Longrightarrow x = 3$	
	$3x - 4y + 7 = 0 \Longrightarrow 9 - 4y + 7 = 0 \Longrightarrow y = 4$	

* (3,4) without work \Rightarrow Attempt mark

* Accept $(3, 4) \in L$ and $(3,4) \in M$ shown in each case.

Blunders (-3)

- B1 Error in manipulation of both equations
- B2 Transposition error
- B3 No substitution for second value

Slips (-1)

S1 Arithmetic slips to a max of -3

- A1 Any correct step and stops
- A2 Graphical solution correct

Att 2

Plot $p(-1,1), r(3,4), q(6,0), p \in L, q \in M, r \in L \cap M$

Slips (-1)

S1 Each element missing

Attempts (2 marks)

- A1 One point only plotted
- A2 Axes only drawn

_	(b) (iv)	5 marks	Att 2
	(iv)	Slope $pr = \frac{y_2 - y_1}{x_2 - x_1} = \frac{1 - 4}{-1 - 3} = \frac{3}{4}$ Slope $qr = \frac{y_2 - y_1}{x_2 - x_1} = \frac{0 - 4}{6 - 3} = \frac{-4}{3}$	or L: $y = \frac{3}{4}x + \frac{7}{4} \Rightarrow \text{slope} = \frac{3}{4}$ $M: y = \frac{-4}{3}x + 8 \Rightarrow \text{slope} = \frac{-4}{3}$
			$\frac{3}{4} \cdot \frac{-4}{3} = -1 \Longrightarrow \angle prq \text{ right angle}$
*	If produc	t = -1 no need for conclusion	

If product = -1 no need for conclusion

Blunders (-3)

- Incorrect relevant formula B1
- B2 Mixes both *x* and *y* in substitution
- Substitutes correctly but slope not found **B**3
- B4 Errors in transposition

Slips (-1)

- **S**1 Incorrect conclusion for product \neq -1
- Slopes found and stops S2
- Lengths of sides of triangle prq calculated but relationship not established S3

Attempts (2 marks)

Correct formula and stops A1

Prove that a line through the centre of a circle perpendicular to a chord bisects the chord.

(c)	15 marks	Att 5
	Given: Circle C, centre c on D, with chord $ab \perp D$, and $ab \cap D$ Construction: Join ca and cb step 1 To Prove : $ ap = bp $ Proof : $ ca = cb $ step 2 $ \angle cpa = \angle cpb $ (right angles) step3 cp = cp \Rightarrow RHS $\Rightarrow \Delta cap$ and Δcpb congruent step 4 $\Rightarrow ap = bp $ step5 or $ ca = cb $ $\Rightarrow \angle cap = \angle cpb $ given $\Rightarrow \angle acp = \angle cbp $ step 3 \Rightarrow ASA $\Rightarrow \Delta cap$ and Δcpb congruent step 4 $\Rightarrow ap = bp $ step5 or $ ca = cb $ $\Rightarrow \angle cap = \angle cbp $ step 2 $ \angle cpa = \angle cbp $ step 2 $ \angle cpa = \angle cbp $ step 5 $\Rightarrow ap = bp $ step5 $\Rightarrow \angle cap = \angle cbp $ step 2 $ \angle cpa = \angle cbp $ step 3 $\Rightarrow ap = bp $ step5 $\Rightarrow ap = bp $ step5 $\Rightarrow ap = bp $ step5	$p = \{p\}$

* Some steps may be indicated on diagram

* Accept any other valid proofs

Blunders (-3)

- B1 Each step incorrect or omitted
- B2 Each step incomplete

Attempts (5 marks)

A1 Diagram with circle drawn, and diameter or chord indicated

Worthless (0)

- W1 Wrong Theorem
- W2 Circle and nothing else

	QUESTION 3	
Part (a) Part (b) Part (c)	10(5,5) marks 20 marks 20 (10,10) marks	Att (2,2) Att 7 Att (3,3)
Part (a)	10 (5, 5) marks	Att(2,2)
<i>o</i> is the centre of the	e circle, as shown.	r
	and $ \angle prq $.	
(ii) æ	S Find $ \angle opq $	0 100° q
(a) (i)	5 marks	Att 2
(i)	$ \angle prq = \frac{1}{2}(100^{\circ}) = 50^{\circ}$	
* Accept correct answe	r without work	
Blunders (-3)		
B1 Finds $\frac{1}{2}$ reflex angle		
<i>Slips</i> (-1) S1 Arithmetic slips to a r	nax of -3	
Attempts (2 marks)A1Reflex angle and stopA2 $ \angle prq = 200^{\circ}$	S	
(a) (ii)	5 marks	Att 2
$ \angle opq $		
* Accept correct answe Blunders(-3) B1 Isosceles triangle not B2 $ \angle opq = 80^{\circ}$	r on diagram with indication of isosceles tria implied or indicated	ingle
Slips (-1) Sl Arithmetic slips to a r	nax of -3	
Attempts (2 marks) A1 Indicates sum of angle	es of triangle =180°	

A1 Indicates sum of angles of triangle =180°

(b)	20 marks	Att 7
Given:	Circle C, centre c, with points a,b,d on arc	
Construction:	Join <i>ac</i> , <i>bc</i> , <i>ad</i> , <i>bd</i>	
To prove:	Join <i>dc</i> and produce to x $ \angle acb = 2 \angle adb $	Step1
	C a a b	
Proof:		
	ac = cd . $\Rightarrow \angle cad = \angle adc $	step 2
	But $ \angle acx = \angle cad + \angle adc $	step 3
	$\Rightarrow \angle acx = 2 \angle adc $	step 4
	Similarly $ \angle bcx = 2 \angle bdc $	
	$\Rightarrow \angle acx + \angle bcx = 2 \angle adc + 2 \angle bdc $	step 5
	$\Rightarrow \left \angle acb \right = 2 \left \angle adb \right $	step 6
* Steps 1 and 2 m	nay be indicated on diagram	

Steps 1 and 2 may be indicated on diagram

Blunders (-3)

- B1 Each step incorrect or omitted
- B2 Each step incomplete

- A1 Diagram with angle at centre and or angle at arc indicated
- A2 Theorem proven for angle in a semi-circle

abcd is a parallelogram and *a*, *b*, *y* and *d* are points on the circle.

$$|\angle aby| = 50^{\circ}.$$

(i)
$$\swarrow$$
 Find $| \angle ady |$.

(ii) \bigotimes Prove |by| = |bc|.

(c) (i)	10 marks	Att 3
(i)	$ \angle ady = 180^{\circ} - 50^{\circ} = 130^{\circ}$	

Accept correct answer given on diagram

Blunders (-3)

B1 Uses 360° instead of 180°

Slips (-1)

*

S1 Arithmetic errors to a max of -3

Attempts (3 marks)

- A1 Indicates sum of the opposite angles in cyclic quadrilateral = 180°
- A2 Diagram drawn with a correct modification

Worthless (0)

W1 $| \angle ady | = 50^{\circ}$

(c) (ii)10 marksAtt 3(ii)
$$|\angle abc| = 130^{\circ}$$

 $\Rightarrow |\angle ybc| = 80^{\circ}$
 $|\angle aby| = |\angle byc|$ alternates
 $\Rightarrow |\angle bbc| = 50^{\circ}$
 $\Rightarrow |\angle bcy| = 180^{\circ} - (80^{\circ} + 50^{\circ}) = 50^{\circ}$
 $\Rightarrow |\angle byc| = |\angle bcy|$
 $\Rightarrow |by| = |bc|or $|\angle dab| = |\angle bcy|$
 $|\angle dab| = |\angle byc|$
Then
 $|\angle bcy| = |\angle bbcy|$
 $\Rightarrow |by| = |bc|$$

Angles proven equal but no conclusion indicated B1

Slips (-1)

Arithmetic slips to a max of -3 **S**1

Attempts (3 marks)

Indicates $| \angle ybc | = 80^{\circ}$ Indicates $| \angle byc | = 50^{\circ}$ A1

A2

Worthless (0)

- Takes Δ *bcy* as right-angled W1
- $| \angle abc |$ right-angled W2

Part (a) Part (b) Part (c)	QUESTION 4 10 marks 20(10,10)marks 20 (5,5,10) marks	Att 3 Att (3,3) Att (2,2,3)
Part (a	a) 10 marks	Att 3
The li	The <i>L</i> is parallel to the line <i>M</i> . Calculate the value of <i>x</i> and the value of <i>y</i> , in the diagram.	у° у° L 140° М
(a)	10 marks	Att 3
	or $40^{\circ} + x + y = 1$	$\Rightarrow 70^{\circ} + y = 140 \Rightarrow y = 70^{\circ}$ $180^{\circ} = 180^{\circ} \Rightarrow y = 70^{\circ}$

Accept answers indicated on diagram

Blunders (-3)

B1 One value found

Slips (-1) S1 Arithmetic slip

Attempts (3 marks)

A1 $x + y = 140^{\circ}$

A2 Sum of angles of triangle equals 180°

- Blunders (-3)
- B1 For each parallel not shown in construction
- B2 Third arc not joined to the point *b*

- A1 Line L drawn
- A2 Straight line divided into three equal parts

(b) (ii)		10 marks Att
(ii)	A	Rotation 90°(anti-clockwise) or 270°(clockwise)
	В	Central Symmetry or Rotation 180°
	С	Axial Symmetry

Accept angle of rotation without reference to clockwise or anticlockwise One correct transformation 4 marks *

*

* Two correct transformations 7 marks

* Three correct transformations 10 marks

Slips (-1)

No angle or incorrect angle of rotation **S**1

Attempts (3 marks)

Any attempt at drawing the original figure under one of the given transformations A1

(c) (i)
$$5 \text{ marks}$$
 Att 2
(i) $\frac{30}{10} = \frac{42}{|qm|} \Rightarrow |qm| = \frac{42.10}{30} = 14 \text{ or } \frac{20}{10} = \frac{42 - |qm|}{|qm|}$
 $\Rightarrow 20 |qm| = 10(42 - |qm|)$
 $\Rightarrow 30 |qm| = 420$
 $\Rightarrow |qm| = 14$
or $\frac{20}{10} = \frac{2}{1} \Rightarrow |qm| = \frac{1}{3}(42) = 14$

B1 $\frac{30}{10} = \frac{|qm|}{42}$ or equivalent

B2 Transposition error

Slips (-1)

S1 Arithmetic slip

S2 |qn| correct, but |qm| not found

Attempts (2 marks)

A1 One correct relevant ratio

(i)
$$5 \text{ marks} \qquad \text{Att 2}$$
(ii)
$$|qm| = |pq| = 14 \qquad \Rightarrow \frac{20}{14} = \frac{30}{|om|} \Rightarrow |om| = 21$$

B1
$$\frac{14}{20} = \frac{30}{|om|}$$
 or equivalent

B2 Transposition error

Slips (-1)

S1 Arithmetic slips to a max of -3

Attempts (2 marks)

A1 One correct relevant ratio

(c) (iii)	10	marks	Att 3
(iii) $\frac{area\Delta pqn}{area\Delta omn} =$	$=\frac{\frac{1}{2}20.28.Sin \angle qnp }{\frac{1}{2}30.42Sin \angle mno }$	or	$ \angle qpn = \angle mon $ since $qp // mo$
=	$\frac{4}{9}$.		$\frac{\operatorname{area}\Delta pqn}{\operatorname{area}\Delta omn} = \frac{\frac{1}{2}.20.14.\operatorname{Sin} \angle qpn }{\frac{1}{2}.30.21.\operatorname{Sin} \angle mon } = \frac{4}{9}.$

Blunders (-3)

- B1 Incorrect relevant formula
- B2 Substitutes incorrectly into correct formula
- B3 No indication of equal angles (method 2)
- B4 Ratio not indicated
- B5 Ratio not simplified
- B6 Transposition error

Slips (-1)

- S1 Arithmetic slips to a max of -3
- S2 Fraction not in simplest form

Attempts (3 marks)

A1 Area of triangle with some substitution

	QUESTION 5	
Part (a)	10 marks	Att 3
Part (b)	20 (10,10) marks	Att (3,3)
art (c)	20(5,5,10) marks	Att (2,2,3)
Part (a)	10 marks	Att 3
\swarrow Given that $\cos C = \frac{2}{3}$,	Ν	
find the value of x .		
	<u> </u>	

(a)	10 marks	Att 3
	$\cos C = \frac{x}{9} \implies \frac{2}{3} = \frac{x}{9} \implies x = 6$	

- B1 Incorrect ratio for Cos C
- B2 Error in cross multiplication
- B3 Incorrect ratio in use of Sin function or Sine Rule
- B4 Reads wrong page of tables or uses calculator in incorrect mode
- B5 $1^{0} \neq 60^{1}$

B6 $\frac{2}{3} = \frac{x}{9}$ and stops

Slips (-1)

- S1 Arithmetic slips to a max of -3
- S2 Slip reading tables (e.g. wrong column)
- S3 Fails to distinguish between degrees and minutes and degrees in decimal format

- A1 Indicates use of *x* and 9 in a ratio
- A2 Finds measure of angle *C* and stops
- A3 Finds value of third angle and stops
- A4 Writes down Sin, Cos, or Tan ratio and stops

(b) (i)	10 marks	Att 3
(i)	Tan $A = \frac{1.6}{3} = .5333 \implies A = 28 \cdot 07^\circ = 28^\circ$	

- B1 Incorrect ratio for Tan A
- B2 Error in cross multiplication
- B3 Reads wrong page of tables or uses calculator in incorrect mode or finds Tan(.5333)
- B4 Error in Theorem of Pythagoras.
- B5 Incorrect ratio in use of Sin function or Cos function
- B6 Incorrect ratio in use of Sine Rule
- B7 $1^{0} \neq 60^{1}$
- B8 Tan A = .5333 and stops
- B9 Early rounding off which affects final answer

Slips (-1)

- S1 Arithmetic slips to a max of -3
- S2 Finds value of other acute angle
- S3 Slip reading tables (e.g. wrong column)
- S4 Fails to distinguish between degrees and minutes and degrees in decimal format
- S5 Fails to round off

- A1 Indicates use of 1.6 and 3 in a ratio
- A2 Finds value of hypotenuse and stops

(ii) Tan
$$A = \frac{h}{13} \implies h = 13$$
 (.5333) = $6 \cdot 9329 = 6.9$ or $\frac{3}{1.6} = \frac{13}{h} \implies h = 6.933 = 6.9$
or $\frac{Sin28^{\circ}}{h} = \frac{Sin62^{\circ}}{13} \implies h = \frac{13Sin28^{\circ}}{Sin62^{\circ}} = 6.933 = 6.9$

Accept 28.07[°] or 28[°] from above *

Blunders (-3)

- **B**1 Incorrect ratio for Tan function
- B2 Error in cross multiplication
- Reads wrong page of tables or uses calculator in incorrect mode **B**3
- **B**4 Incorrect ratio in use of Sine Rule
- Incorrect ratio in use of Sin function or Cos function B5
- **B6** Takes adjacent as 10 instead of 13
- $1^{0} \neq 60^{1}$ **B**7

 $\frac{3}{1.6} = \frac{h}{13}$ or equivalent **B**8

B9 Takes 10 instead of 13 in ratio method

Slips (-1)

- **S**1 Arithmetic slips to a max of -3
- S2 Slip reading tables (e.g. wrong column)
- Fails to distinguish between degrees and minutes and degrees in decimal format S3
- S4 Fails to round off or rounds off incorrectly

- Indicates use of *h* in a ratio A1
- A2 Indicates use of 3 and 1.6 in a ratio
- Indicates use of 13 A3
- Sine Rule with some substitution A4
- A5 Calculates hypotenuse (14.7) and stops
- Finds angle 62° and stops A6

* Accept answer given on diagram

* Accept candidates answer for $| \angle abc |$ for further work

Blunders (-3)

B1 Fails to divide by 2

Slips (-1)

- S1 Arithmetic slip
- S2 60° and 90° indicated but not added

- A1 Indicates 60° angle(s) in equilateral triangle
- A2 Indicates angle(s) in square 90°
- A3 Indicates 180° is sum of angles in triangle
- A4 Identifies that triangle is isosceles

(c) (ii) 10 marks Att 3
(ii)
$$\frac{Sin150^{\circ}}{|ac|} = \frac{Sin15^{\circ}}{6} \Rightarrow |ac| = \frac{6Sin150^{\circ}}{Sin15^{\circ}} = \frac{6(.5)}{(0.2588)} = 11.59 = 11.6$$

 $| \angle abc |$ treated as 60° or 90° gives rise to special cases, apply A1 at most.

Blunders (-3)

*

- B1 Incorrect ratio in use of Sine Rule
- B2 Error in cross multiplication
- B3 Reads wrong page of tables or uses calculator in incorrect mode
- B4 $1^{0} \neq 60^{1}$
- B5 Early rounding off which effects answer

Slips (-1)

- S1 Arithmetic slips to a max of -3
- S2 Slip reading tables (e.g. wrong column)
- S3 Fails to distinguish between degrees and minutes and degrees in decimal format
- S4 Fails to round off

Attempts (2 marks)

A1 Sine Rule with some substitution

QUESTION 6				
Part (a)	10 marks	Att 3		
Part (b)	20 (10,10) marks	Att (3,3)		
Part (c)	20(5,10,5) marks	Att(2,3,2)		

Part (a)	10 marks	Att 3		
Z	6 is the mean of the numbers 3, 1, 9, x , 5.			
	Find the value of x.			
(a)	10 marks	Att 3		

- B1 Incorrect denominator
- B2 Error in transposition
- B3 18*x* in numerator

Slips (-1)

S1 Arithmetic slips to a max of -3

- A1 Adds some or all of the numbers
- A2 Indication of division by 5
- A3 $\frac{3+1+9+x+5}{5} = 6$ and stops

(b) (i)	10 marks				Att 3		
Number of seconds after winner	0-10	10-30	30-60	60-80	80-90	90-100	
Number of athletes	1	6	6	8	2	1	

- B1 Heights taken as frequency
- B2 Correct ratios but incorrect values
- B3 Mishandling of base

Slips (-1)

S1 Arithmetic slips to a max of -3

Attempts (3 marks)

A1 Bases taken as frequency

(ii) Mean =
$$\frac{1(5) + 6(20) + 6(45) + 8(70) + 2(85) + 1(95)}{1 + 6 + 6 + 8 + 2 + 1} = \frac{1220}{24}$$

= 50 \cdot 83 = 51 \sec

Accept candidate's work from (b) (i)

Blunders (-3)

- B1 Division by 6
- B2 Division by sum of mid interval values
- B3 Use of value other than mid interval values
- B4 Consistently adds mid interval value to frequency instead of multiplying

Slips (-1)

- S1 Arithmetic slips to a max of -3
- S2 Fails to round off

- A1 Some or all mid intervals identified
- A2 One correct multiplication in numerator
- A3 Indicates division by 24
- A4 Sum of frequencies divided by 6 or sum of mid interval values divided by 6

The number of people voting in a polling station on election day was recorded every two hours. The following are the results.

Time	800 -	1000 -	1200 -	1400-	1600-	1800 -	2000-
TIME	1000	1200	1400	1600	1800	2000	2200
Number of	200	300	250	350	800	550	350
people	200	500	230	550	800	550	550
[Note 1000 – 1200 means 1000 or later but before 1200, etc.]							
(i)	Draw up a cumulative frequency table.						
(ii)	On graph paper construct the ogive.						
(iii)	\swarrow Use your graph to estimate the number of people who cast their						
	vote between 1700 and 1900.						

(c)	(i)	

5 marks

Att 2

Time	800 -	800-	800-	800-	800-	800-	800-
Time	1000	1200	1400	1600	1800	2000	2200
Number of people	200	500	750	1100	1900	2450	2800

Blunders (-3)

B1 Omits any number or puts numbers in wrong place

Slips (-1)

S1 Arithmetic slips to a max of -3

Attempts (2 marks)

- A1 Any one value filled in correctly into table
- A2 Any indication of addition of frequencies

Worthless (0)

W1 Copies table and stops

- B1 Incorrect scales
- B2 Plots points but does not join them
- B3 Draws a 'cumulative' histogram
- B4 Points joined with straight lines
- B5 Draws trend graph from original table

Slips (-1)

- S1 Each incorrect plot
- S2 Each point omitted

Attempts (3 marks)

A1 Draws axes and stops

(c) (iii)		5 marks	Att 2
(iii)	2175 - 1500 =	675	

* Accept answer consistent with candidate's ogive with a tolerance of ± 200

* Trend graph or cumulative histogram in (c) (i) attracts attempt mark at most in (c) (ii).

Blunders (-3)

- B1 Line drawn from incorrect starting point of correct axis (once only)
- B2 No subtraction of values indicated

Slips (-1)

- S1 Work correct but outside tolerance
- S2 Adds both values

Attempts (2 marks)

A1 Graphical indication, but number not stated