MARKING SCHEME

JUNIOR CERTIFICATE EXAMINATION 2005

MATHEMATICS -HIGHER LEVEL - PAPER 2

GENERAL GUIDELINES FOR EXAMINERS

1. Penalties of three types are applied to candidates' work as follows

- Blunders - mathematical errors/omissions (-3)
- Slips - numerical errors (-1)
- Misreadings (provided task is not oversimplified) (-1).

Frequently occurring errors to which these penalties must be applied are listed in the scheme. They are labelled B1, B2, B3,..., S1, S2,..., M1, M2,...etc. These lists are not exhaustive.
2. When awarding attempt marks, e.g. Att(3), note that

- any correct, relevant step in a part of a question merits at least the attempt mark for that part
- if deductions result in a mark which is lower than the attempt mark, then the attempt mark must be awarded
- a mark between zero and the attempt mark is never awarded.

3. Worthless work is awarded zero marks. Some examples of such work are listed in the scheme and they are labelled as W1, W2,...etc.
4. The phrase "hit or miss" means that partial marks are not awarded - the candidate receives all of the relevant marks or none.
5. The phrase "and stops" means that no more work is shown by the candidate.
6. Special notes relating to the marking of a particular part of a question are indicated by an asterisk. These notes immediately follow the box containing the relevant solution.
7. The sample solutions for each question are not intended to be exhaustive lists - there may be other correct solutions.
8. Unless otherwise indicated in the scheme, accept the best of two or more attempts - even when attempts have been cancelled.
9. The same error in the same section of a question is penalised once only.
10. Particular cases, verifications and answers derived from diagrams (unless requested) qualify for attempt marks at most.
11. A serious blunder, omission or misreading results in the attempt mark at most.
12. Do not penalise the use of a comma for a decimal point, e.g. $€ 5.50$ may be written as $€ 5,50$.

Question 1

Part (a)	$\mathbf{1 0}(\mathbf{5 , 5)}$ marks	Att (2,2)
Part (b)	$20(5,15)$ marks	Att (2,5)
Part (c)	$20(10,10)$ marks	Att(3,3)
Part (a)	$\mathbf{1 0}(5,5)$ marks	Att (2,2)

(i) Find, correct to the nearest cm^{2} the area of a disc of radius 11 cm .
(ii) Find, correct to the nearest cm^{2}, the area of the shaded region in the diagram.

(a) (i)

Att 2
(i) Area of disc $=3.14 \times(11)^{2}$
$=3.14 \times 121$
$=379 \cdot 94=380$ to nearest cm^{2}

Blunders (-3)

B1 Incorrect substitution into correct formula
B2 Incorrect squaring
B3 Incorrect relevant area formula with substitution.
Slips (-1)
S1 Answer in terms of π
S2 Fails to round off
S3 Arithmetic slips to a max of -3
Attempts (2 marks)
A1 Correct formula with some substitution
A2 $2 \pi r$ with r substituted correctly
(ii) Shaded area $=379.94 \div 3$
$=126 \cdot 64 \mathrm{~cm}^{2}$
$=\quad 127 \mathrm{~cm}^{2}$

* Accept candidates answer from (a) (i).

Blunders(-3)
B1 Incorrect substitution into correct formula
B2 Incorrect relevant area formula with some substitution
B3 Error in use of 120°
Slips (-1)
S1 Answer in terms of π
S2 Fails to round off
S3 Arithmetic slips to a max of -3
Attempts (2 marks)
A1 Correct formula but no substitution
A2 Indicates division by 3
A3 Indicates $\frac{120}{360}$ or equivalent
(i) A solid metal cylinder has height 20 cm and diameter 14 cm .

2 Find its curved surface area in terms of π.
(ii) A hemisphere with diameter 14 cm is removed from the top of this cylinder, as shown.

2 Find the total surface area of the

remaining solid in terms of π.
(b) (i)

5 marks
Att 2
(i)

$$
\mathrm{CSA}=2 \pi \mathrm{rh}=2 \pi \times 7 \times 20 \quad \text { or } \quad 280 \pi \mathrm{~cm}^{2} .
$$

Blunders (-3)
B1 $r=14$
B2 Incorrect relevant formula with some substitution
Slips (-1)
S1 Arithmetic slips to a max of -3
S2 Answer not in terms of π
Attempts (2 marks)
A1 Correct formula with some substitution
A2 Volume of cylinder with fully correct substitution
(b) (ii)

15 marks
Att 5
(ii)

$$
\begin{array}{rlrl}
\text { Total Surface Area }=280 \pi & +\pi \mathrm{r}^{2}+2 \pi \mathrm{r}^{2} & \text { or } & 280 \pi+3 \pi \mathrm{r}^{2} \\
=280 \pi+\pi 7^{2}+ & 2 \pi 7^{2} & \text { or } & 280 \pi+3 \pi 7^{2} \\
& =427 \pi \mathrm{~cm}^{2} .
\end{array}
$$

Blunders (-3)

B1 Each part calculated but not added
B2 Omission of cylinder base
B3 Incorrect relevant formula with substitution
Slips (-1)
S1 Arithmetic slips to a max of -3
S2 Answer not in required form (e.g. 1340.78)

Attempts (5 marks)

A1 Formula for area of base of cylinder or CSA of hemisphere with some substitution

Worthless (0)

W1 Volume of cylinder and /or hemisphere (with or without substitution)
(i) A cone has radius x and height $3 x$.

2 Find its volume in term of π and x.
(ii) A second cone has twice the radius and half the height of the first cone.
\& Find the ratio of the volume of the second cone to the volume of the first.
(c) (i)
(i)

$$
\begin{aligned}
\text { Volume } & =\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h} \\
& =\frac{1}{3} \pi x^{2} 3 x \\
& \text { or } \pi x^{3}
\end{aligned}
$$

Blunders (-3)

B1 Each incorrect substitution into correct formula
B2 Incorrect related formula with substitution
Slips (-1)
S1 Arithmetic slips to a max of -3

Attempts (3 marks)

A1 Diagram with x and/or $3 x$ shown
A2 Solution with value assigned to x

$$
\begin{gathered}
\text { Volume }=\frac{1}{3} \pi(2 x)^{2} \frac{3 x}{2} \\
\text { or } 2 \pi x^{3} \\
\text { Ratio of volume of second to first }=\frac{1}{3} \pi(2 x)^{2} \frac{3 x}{2}: \frac{1}{3} \pi x^{2} 3 x=2 \pi x^{3}: \pi x^{3}=2: 1
\end{gathered}
$$

Accept ratio in any order
Blunders (-3)
B1 Each incorrect substitution into correct formula
B2 Incorrect related formula with substitution
B3 Volumes not expressed as a ratio
B4 Ratio not simplified
B5 $\quad(2 x)^{2}=2 x^{2}$
Slips (-1)
S1 Arithmetic slips to a max of -3
A1 Correct formula with some substitution
Attempts (3 marks)
A2 Diagram with $2 x$ and/or $\frac{3 x}{2}$ shown
A3 Ratio with value assigned to x
Part (a)
$10(5,5)$ marks
Part (b)
$25(5,10,5,5)$ marks
Part (c)
15 marks
Att(2,2)
Att (2,3,2,2)

Part (a)
$10(5,5)$ marks
Att (2,2)
$a(1,4)$ and $b(-2,-1)$ are two points.
(i) Find the slope of $a b$.
(ii) Find the equation of $a b$.
(a) (i)
5 marks
Att 2
(i) Slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-1-4}{-2-1}=\frac{-5}{-3}$ or $\frac{5}{3}$

Blunders (-3)
B1 Incorrect slope formula and continues
B2 Mixes both x and y in substitution
B3 Substitutes correctly but slope not found
Slips (-1)
S1 Incorrect sign after substitution
S2 Arithmetic slips to a max of -3

Attempt (2 marks)

A1 Writes slope formula with or without some substitution
A2 Some attempt at difference of y 's or difference of x 's
(a) (ii)
5 marks
Att 2

Equation $\quad y-4=\frac{5}{3}(x-1)$ or $y-4=\frac{-5}{-3}(x-1) \quad y=\frac{5}{3} x+c$

$$
y--1=\frac{5}{3}(x--2) \quad \text { or } y--1=\frac{-5}{-3}(x-2) 4=\frac{5}{3} .1+c
$$

$$
c=4-\frac{5}{3} \text { or } \frac{7}{3}
$$

* May find another point on $a b$ (e.g. midpoint and continues)

Blunders (-3)
B1 Incorrect relevant formula and continues
B2 Switches both x and y in substitution
B3 Substitutes correctly for x and y but no slope
Slips (-1)
S1 Incorrect sign after substitution

Attempts (2 marks)

A1 Correct line formula and stops
L is the line $3 x-4 y+7=0$ and contains the point $p(-1, h)$.
M is the line $4 x+3 \mathrm{y}-24=0$ and contains the point $q(k, 0)$.
(i) Find the values of h and k.
(ii) $\quad L$ and M intersect at the point r.
2) Find the coordinates of r.
(iii) Show p, q, r, L and M on a coordinate diagram on graph paper.
(iv) Prove that $\angle p r q$ is a right angle.
(b) (i)

$$
5 \text { marks }
$$

Att 2
(i) $\begin{array}{llll}3(-1)-4 & h+7=0 & 4 k+3(0)-24=0 \\ h & = & 1 & k\end{array}$

Blunders (-3)

B1 Mixes x and y in substitution
B2 Transposition error

Slips (-1)

S1 Arithmetic slips to a max of -3 e.g. $3(0) \neq 0$

Attempts (2 marks)

A1 Some attempt at substitution
(b) (ii)
(ii)

$$
\begin{aligned}
& 3 x-4 y+7=0 \Rightarrow 9 x-12 y+21=0 \\
& 4 x+3 y-24=0 \Rightarrow \frac{16 x+12 y-96=0}{25 x \quad-75=0} \\
& 3 x-4 y+7=0 \Rightarrow 9-4 y+7=0 \Rightarrow y=4
\end{aligned} \quad \Rightarrow x=3
$$

* $\quad(3,4)$ without work \Rightarrow Attempt mark
* \quad Accept $(3,4) \in L$ and $(3,4) \in M$ shown in each case.

Blunders (-3)

B1 Error in manipulation of both equations
B2 Transposition error
B3 No substitution for second value
Slips (-1)
S1 Arithmetic slips to a max of -3
Attempts (3 marks)
A1 Any correct step and stops
A2 Graphical solution correct

Slips (-1)
S1 Each element missing
Attempts (2 marks)
A1 One point only plotted
A2 Axes only drawn
(b) (iv)
(iv)

$$
\begin{array}{ll}
\text { Slope } p r=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{1-4}{-1-3}=\frac{3}{4} & \text { or } L: y=\frac{3}{4} x+\frac{7}{4} \Rightarrow \text { slope }=\frac{3}{4} \\
\text { Slope } q r=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{0-4}{6-3}=\frac{-4}{3} & M: y=\frac{-4}{3} x+8 \Rightarrow \text { slope }=\frac{-4}{3} \\
& \begin{array}{l}
\frac{3}{4} \cdot \frac{-4}{3}=-1 \Rightarrow|\angle p r q| \text { right angle }
\end{array}
\end{array}
$$

If product $=-1$ no need for conclusion

Blunders (-3)

B1 Incorrect relevant formula
B2 Mixes both x and y in substitution
B3 Substitutes correctly but slope not found
B4 Errors in transposition
Slips (-1)
S1 Incorrect conclusion for product $\neq-1$
S2 Slopes found and stops
S3 Lengths of sides of triangle prq calculated but relationship not established
Attempts (2 marks)
A1 Correct formula and stops

2 Prove that a line through the centre of a circle perpendicular to a chord bisects the chord.
(c)

15 marks
Att 5
Given: Circle C, centre c on D, with chord $a b \perp \mathrm{D}$, and $a b \cap \mathrm{D}=\{\mathrm{p}\}$
Construction: Join $c a$ and $c b$
step 1
To Prove : $|a p|=|b p|$
Proof : $|c a|=|c b|$ step 2
$|\angle c p a|=|\angle c p b|$ (right angles) step3
$|c p|=|c p|$
\Rightarrow RHS $\Rightarrow \Delta c a p$ and $\Delta c p b$ congruent step 4
$\Rightarrow|a p|=|b p| \quad$ step5
or $|c a|=|c b|$
$\stackrel{\text { r }}{\Rightarrow}|\angle c a p|=|\angle c b p|$ step2
$|\angle c p a|=|\angle c p b|$ given
$\Rightarrow|\angle a c p|=|\angle \mathrm{bcp}|$ step 3
\Rightarrow ASA $\Rightarrow \Delta c a p$ and $\Delta c p b$ congruent step 4
$\Rightarrow|a p|=|b p|$
$\underline{\mathbf{o r}}|c a|=|c b|$
$\Rightarrow|\angle c a p|=|\angle c b p|$ step 2
$|\angle c p a|=|\angle c p b|$ (right angles)

$\Rightarrow|\angle a c p|=|\angle \mathrm{bcp}|$ step3
$\Rightarrow|c p|=|c p|$
$\Rightarrow \mathrm{SAS} \Rightarrow \Delta c a p$ and $\Delta c p b$ congruent step 4
$\Rightarrow|a p|=|b p| \quad$ step 5

* Some steps may be indicated on diagram
* Accept any other valid proofs

Blunders (-3)

B1 Each step incorrect or omitted
B2 Each step incomplete

Attempts (5 marks)

A1 Diagram with circle drawn, and diameter or chord indicated
Worthless (0)
W1 Wrong Theorem
W2 Circle and nothing else

QUESTION 3

(a) (i)
5 marks
Att 2
(i)

$$
|\angle p r q|=\frac{1}{2}\left(100^{\circ}\right)=50^{\circ}
$$

* Accept correct answer without work

Blunders (-3)

B1 Finds $\frac{1}{2}$ reflex angle
Slips (-1)
S1 Arithmetic slips to a max of -3

Attempts (2 marks)

A1 Reflex angle and stops
A2 $|\angle p r q|=200^{\circ}$
(a) (ii)

Att 2
(ii)

$$
\begin{aligned}
& |o p|=|o q| \Rightarrow|\angle o q p|=|\angle o p q| \\
& |\angle o q p|+|\angle o p q|=80^{\circ} \\
& |\angle o p q| \quad=40^{\circ}
\end{aligned}
$$

* Accept correct answer on diagram with indication of isosceles triangle

Blunders(-3)

B1 Isosceles triangle not implied or indicated
B2 $|\angle o p q|=80^{\circ}$
Slips (-1)
S1 Arithmetic slips to a max of -3

Attempts (2 marks)

A1 Indicates sum of angles of triangle $=180^{\circ}$

Prove that the measure of the angle at a centre of the circle is twice the measure of the angle at the circumference, standing on the same arc.

(b)

20 marks
Att 7
Given: Circle C, centre c, with points a, b, d on arc
Construction: Join $a c, b c, a d, b d$
Join $d c$ and produce to x
Step1
To prove: $\quad|\angle a c b|=2|\angle a d b|$

Proof:

[^0]
Blunders (-3)

B1 Each step incorrect or omitted
B2 Each step incomplete

Attempts (7 marks)

A1 Diagram with angle at centre and or angle at arc indicated
A2 Theorem proven for angle in a semi-circle
$a b c d$ is a parallelogram and a, b, y and d are points on the circle.
$|\angle a b y|=50^{\circ}$.
(i) Find | $\angle a d y \mid$.
(ii) Prove $|b y|=|b c|$.

(c) (i)

10 marks

Att 3
(i)

$$
|\angle a d y|=180^{\circ}-50^{\circ}=130^{\circ}
$$

Accept correct answer given on diagram

Blunders (-3)

B1 Uses 360° instead of 180°
Slips (-1)
S1 Arithmetic errors to a max of -3

Attempts (3 marks)

A1 Indicates sum of the opposite angles in cyclic quadrilateral $=180^{\circ}$
A2 Diagram drawn with a correct modification
Worthless (0)
W1 $\quad|\angle a d y|=50^{\circ}$
(c) (ii)

(ii) $\begin{aligned} & \|\angle a b c\|=130^{\circ} \\ \Rightarrow & \|\angle y b c\|=80^{\circ} \end{aligned}$ $\|\angle a b y\|=\|\angle b y c\|$ alternates $\begin{aligned} & \Rightarrow\|\angle b y c\|=50^{\circ} \\ & \Rightarrow\|\angle b c y\|=180^{\circ}-\left(80^{\circ}+50^{\circ}\right)=50^{\circ} \\ & \Rightarrow\|\angle b y c\|=\|\angle b c y\| \\ & \Rightarrow\|b y\|=\|b c\| \end{aligned}$	$\begin{gathered} \text { or }\|\angle d a b\|=\|\angle b c y\| \\ \|\angle d a b\|+\|\angle b y d\|=\|b y d\|+\|\angle b y c\| \\ \Rightarrow\|\angle d a b\|=\|\angle b y c\| \\ \text { Then }\|\angle b c y\|=\|\angle b y c\| \\ \Rightarrow\|b y\|=\|b c\| \end{gathered}$

Blunders (-3)
B1 Angles proven equal but no conclusion indicated
Slips (-1)
S1 Arithmetic slips to a max of -3
Attempts (3 marks)
A1 Indicates $|\angle y b c|=80^{\circ}$
A2 Indicates $|\angle b y c|=50^{\circ}$
Worthless (0)
W1 Takes $\Delta b c y$ as right-angled
W2
$|\angle a b c|$ right-angled

QUESTION 4

Part (a)	10 marks	Att 3
Part (b)	20(10,10)marks	Att $(3,3)$
Part (c)	$\mathbf{2 0}(5,5,10)$ marks	Att $(\mathbf{2 , 2 , 3)}$
Part (a)	$\mathbf{1 0}$ marks	Att 3

The line L is parallel to the line M.
Calculate the value of x and the value of y,
 in the diagram.

(a)

10 marks
Att 3

Accept answers indicated on diagram
Blunders (-3)
B1 One value found
Slips (-1)
S1 Arithmetic slip
Attempts (3 marks)
A1 $x+y=140^{\circ}$
A2 Sum of angles of triangle equals 180°
(i) Show how to divide a line segment into three equal parts.

All construction lines must be clearly shown.
(ii) Each of the three figures labelled A, B and C shown below in the box on the right is the image of the figure shown in the box on the left under a transformation. For each of A, B and C, state what the transformation is (translation, central symmetry, axial symmetry or rotation) and in the case of a rotation, state the angle.

(b) (i)

10 marks
Att 3
(i) To divide a line segment [$a b$] into three equal parts

Construction: Draw a line L at an angle to $[a b]$
With a compass mark points p, q, r on L
such that $|a p|=|p q|=|q r|$.
Join $r b$
Draw lines through p and q parallel to $r b$. These lines meet $[a b]$ at m and n.
m and n are the points which divide $[a b]$ into three equal parts.

* No need for written explanation
* Allow a tolerance of 2 mm for points on L , and for points on [ab]

Blunders (-3)
B1 For each parallel not shown in construction
B2 Third arc not joined to the point b
Attempts (3 marks)
A1 Line L drawn
A2 Straight line divided into three equal parts

(ii)	Rotation 90° (anti-clockwise) or 270° (clockwise)	
	B	Central Symmetry or Rotation 180°
	C	Axial Symmetry

* Accept angle of rotation without reference to clockwise or anticlockwise
* One correct transformation 4 marks
* Two correct transformations 7 marks
* Three correct transformations 10 marks

Slips (-1)
S1 No angle or incorrect angle of rotation
Attempts (3 marks)
A1 Any attempt at drawing the original figure under one of the given transformations
[om] is parallel to [$p q]$.
$|o p|=10 \mathrm{~cm},|p n|=20 \mathrm{~cm}$
and $|m n|=42 \mathrm{~cm}$.
(i) Find $|q m|$.
(ii) If $|q m|=|p q|$,
find $|o m|$.

(iii) Find $\frac{\text { area } \Delta p q n}{\text { area } \Delta o m n}$ as a fraction in its simplest form.
[Hint area of $\left.\Delta=\frac{1}{2} a b \sin C\right]$.
(c) (i)

Att 2
(i) $\frac{30}{10}=\frac{42}{|q m|} \Rightarrow|q m|=\frac{42.10}{30}=14$ or $\frac{20}{10}=\frac{42-|q m|}{|q m|}$

$$
\begin{aligned}
& \Rightarrow 20|q m|=10(42-|q m|) \\
& \Rightarrow 30|q m|=420 \\
& \Rightarrow|q m|=14
\end{aligned}
$$

or $\frac{20}{10}=\frac{2}{1} \Rightarrow|q m|=\frac{1}{3}(42)=14$

Blunders (-3)

B1 $\quad \frac{30}{10}=\frac{|q m|}{42}$ or equivalent
B2 Transposition error
Slips (-1)
S1 Arithmetic slip
S2 $\left|q_{n}\right|$ correct, but $|q m|$ not found
Attempts (2 marks)
A1 One correct relevant ratio
(ii)

$$
|q m|=|p q|=14 \quad \Rightarrow \frac{20}{14}=\frac{30}{|o m|} \Rightarrow|o m|=21
$$

Blunders (-3)

B1 $\frac{14}{20}=\frac{30}{|o m|}$ or equivalent
B2 Transposition error
Slips (-1)
S1 Arithmetic slips to a max of -3
Attempts (2 marks)
A1 One correct relevant ratio
(c) (iii)

10 marks
Att 3

$$
\begin{aligned}
& \text { (iii) } \\
& \begin{aligned}
\frac{\text { area } \Delta \text { pqn }}{\text { area } \Delta \text { omn }} & =\frac{\frac{1}{2} 20.28 \cdot \operatorname{Sin}}{\frac{1}{2} 30.42 \operatorname{Sin}} \\
& =\frac{4}{9} .
\end{aligned} \\
& \text { or } \quad|\angle q p n|=|\angle m o n| \text { since } q p / / m o \\
& \frac{\text { area } \Delta \text { pqn }}{\text { area } \Delta \text { omn }}=\frac{\frac{1}{2} \cdot 20 \cdot 14 \cdot \operatorname{Sin}|\angle q p n|}{\frac{1}{2} \cdot 30 \cdot 21 \cdot \operatorname{Sin}|\angle m o n|}=\frac{4}{9} .
\end{aligned}
$$

Blunders (-3)

B1 Incorrect relevant formula
B2 Substitutes incorrectly into correct formula
B3 No indication of equal angles (method 2)
B4 Ratio not indicated
B5 Ratio not simplified
B6 Transposition error
Slips (-1)
S1 Arithmetic slips to a max of -3
S2 Fraction not in simplest form
Attempts (3 marks)
A1 Area of triangle with some substitution

(a)
10 marks

$$
\operatorname{Cos} C=\frac{x}{9} \quad \Rightarrow \frac{2}{3}=\frac{x}{9} \Rightarrow x=6
$$

Att 3

Blunders (-3)

B1 Incorrect ratio for $\operatorname{Cos} C$
B2 Error in cross multiplication
B3 Incorrect ratio in use of Sin function or Sine Rule
B4 Reads wrong page of tables or uses calculator in incorrect mode
B5 $\quad 1^{0} \neq 60^{1}$
B6 $\frac{2}{3}=\frac{x}{9}$ and stops
Slips (-1)
S1 Arithmetic slips to a max of -3
S2 Slip reading tables (e.g. wrong column)
S3 Fails to distinguish between degrees and minutes and degrees in decimal format
Attempts (3 marks)
A1 Indicates use of x and 9 in a ratio
A2 Finds measure of angle C and stops
A3 Finds value of third angle and stops
A4 Writes down Sin, Cos, or Tan ratio and stops

Some students wish to estimate the height of a tree standing on level ground. One of them stands so that the end of his shadow coincides with the end of the shadow of the tree, as shown in the diagram. This student is 1.6 m tall.
His friend then measures the distances shown in the diagram. A is the angle of elevation of the sun.

(i) Find A, correct to the nearest degree.
(ii) Find the height of the tree correct to one decimal place.
(b) (i)

10 marks
Att 3
(i)
$\operatorname{Tan} A=\frac{1.6}{3}=.5333 \Rightarrow A=28 \cdot 07^{\circ}=28^{\circ}$

Blunders (-3)

B1 Incorrect ratio for Tan A
B2 Error in cross multiplication
B3 Reads wrong page of tables or uses calculator in incorrect mode or finds Tan(.5333)
B4 Error in Theorem of Pythagoras.
B5 Incorrect ratio in use of Sin function or Cos function
B6 Incorrect ratio in use of Sine Rule
B7 $\quad 1^{0} \neq 60^{1}$
B8 Tan A=.5333 and stops
B9 Early rounding off which affects final answer

Slips (-1)

S1 Arithmetic slips to a max of -3
S2 Finds value of other acute angle
S3 Slip reading tables (e.g. wrong column)
S4 Fails to distinguish between degrees and minutes and degrees in decimal format
S5 Fails to round off
Attempts (3 marks)
A1 Indicates use of 1.6 and 3 in a ratio
A2 Finds value of hypotenuse and stops
(ii) $\quad \operatorname{Tan} A=\frac{h}{13} \Rightarrow h=13 .(.5333)=6 \cdot 9329=6.9 \quad$ or $\quad \frac{3}{1.6}=\frac{13}{h} \Rightarrow h=6.933=6.9$

$$
\text { or } \frac{\operatorname{Sin} 28^{\circ}}{h}=\frac{\operatorname{Sin} 62^{\circ}}{13} \Rightarrow h=\frac{13 \operatorname{Sin} 28^{\circ}}{\operatorname{Sin} 62^{\circ}}=6.933=6.9
$$

* Accept 28.07^{0} or 28^{0} from above

Blunders (-3)

B1 Incorrect ratio for Tan function
B2 Error in cross multiplication
B3 Reads wrong page of tables or uses calculator in incorrect mode
B4 Incorrect ratio in use of Sine Rule
B5 Incorrect ratio in use of Sin function or Cos function
B6 Takes adjacent as 10 instead of 13
B7 $\quad 1^{0} \neq 60^{1}$
B8 $\frac{3}{1.6}=\frac{h}{13}$ or equivalent
B9 Takes 10 instead of 13 in ratio method
Slips (-1)
S1 Arithmetic slips to a max of -3
S2 Slip reading tables (e.g. wrong column)
S3 Fails to distinguish between degrees and minutes and degrees in decimal format
S4 Fails to round off or rounds off incorrectly

Attempt (3 marks)

A1 Indicates use of h in a ratio
A2 Indicates use of 3 and 1.6 in a ratio
A3 Indicates use of 13
A4 Sine Rule with some substitution
A5 Calculates hypotenuse (14.7) and stops
A6 Finds angle 62° and stops

The diagram shows an equilateral triangle and a square, each of side 6 . a is joined to c.
(i)

Find $|\angle a b c|$ and $|\angle b a c|$.
(ii)

Find $|a c|$, correct to one decimal place.

(c) (i)

Att (2,2)
(i)

$$
|\angle a b c|=60^{\circ}+90^{\circ}=150^{\circ} \quad|\angle b a c|=|\angle b c a| \text { since }|b c|=|b a|
$$

$$
\Rightarrow|\angle b a c|=\frac{1}{2}\left(180^{\circ}-150^{\circ}\right)=15^{\circ}
$$

* Accept answer given on diagram
* \quad Accept candidates answer for $|\angle a b c|$ for further work

Blunders (-3)
B1 Fails to divide by 2
Slips (-1)
S1 Arithmetic slip
S2 60° and 90° indicated but not added

Attempts (2 marks)
A1 Indicates 60° angle(s) in equilateral triangle
A2 Indicates angle(s) in square 90°
A3 Indicates 180° is sum of angles in triangle
A4 Identifies that triangle is isosceles
(c) (ii)
(ii) $\frac{\operatorname{Sin} 150^{\circ}}{|a c|}=\frac{\operatorname{Sin} 15^{0}}{6} \Rightarrow|a c|=\frac{6 \operatorname{Sin} 150^{\circ}}{\operatorname{Sin} 15^{\circ}}=\frac{6(.5)}{(0.2588)}=11 \cdot 59 \quad=11.6$

* $\quad|\angle a b c|$ treated as 60° or 90° gives rise to special cases, apply A1 at most.

Blunders (-3)

B1 Incorrect ratio in use of Sine Rule
B2 Error in cross multiplication
B3 Reads wrong page of tables or uses calculator in incorrect mode
B4 $\quad 1^{0} \neq 60^{1}$
B5 Early rounding off which effects answer
Slips (-1)
S1 Arithmetic slips to a max of -3
S2 Slip reading tables (e.g. wrong column)
S3 Fails to distinguish between degrees and minutes and degrees in decimal format
S4 Fails to round off
Attempts (2 marks)
A1 Sine Rule with some substitution

Part (a)	10 marks	Att 3
Part (b)	$\mathbf{2 0}(\mathbf{1 0 , 1 0)}$ marks	$\operatorname{Att}(\mathbf{3 , 3})$
Part (c)	$\mathbf{2 0 (5 , 1 0 , 5) \text { marks }}$	$\operatorname{Att}(2,3,2)$

2 6 is the mean of the numbers $3,1,9, x, 5$.

Find the value of x.

(a)

10 marks
Att 3

$$
\frac{3+1+9+x+5}{5}=6 \Rightarrow \frac{18+x}{5}=6 \Rightarrow 18+x=30 \Rightarrow x=12
$$

Blunders (-3)
B1 Incorrect denominator
B2 Error in transposition
B3 $18 x$ in numerator
Slips (-1)
S1 Arithmetic slips to a max of -3

Attempts (3 marks)

A1 Adds some or all of the numbers
A2 Indication of division by 5
A3 $\frac{3+1+9+x+5}{5}=6$ and stops

The times taken by a number of athletes to finish a race after the winner crossed the finish line were recorded.

The results are shown in the following histogram.

(i) Given that there are 6 athletes in the 10-30 time interval, complete the following frequency table.

Number of seconds after winner	$0-10$	$10-30$	$30-60$	$60-80$	$80-90$	$90-100$
Number of athletes		$\mathbf{6}$				

[Note 10 - 30 means 10 or more but less than 30, etc.]
(ii) Taking mid-interval values, calculate the mean time taken to finish the race after the winner, correct to the nearest second.
(b) (i)

Number of seconds after winner	$0-10$	$10-30$	$30-60$	$60-80$	$80-90$	$90-100$
Number of athletes	1	$\mathbf{6}$	6	8	2	1

Blunders (-3)
B1 Heights taken as frequency
B2 Correct ratios but incorrect values
B3 Mishandling of base
Slips (-1)
S1 Arithmetic slips to a max of -3

Attempts (3 marks)

A1 Bases taken as frequency
(ii) Mean $=\frac{1(5)+6(20)+6(45)+8(70)+2(85)+1(95)}{1+6+6+8+2+1}=\frac{1220}{24}$

$$
=50 \cdot 83=51 \mathrm{sec}
$$

* Accept candidate's work from (b) (i)

Blunders (-3)
B1 Division by 6
B2 Division by sum of mid interval values
B3 Use of value other than mid interval values
B4 Consistently adds mid interval value to frequency instead of multiplying
Slips (-1)
S1 Arithmetic slips to a max of -3
S2 Fails to round off
Attempts (3 marks)
A1 Some or all mid intervals identified
A2 One correct multiplication in numerator
A3 Indicates division by 24
A4 Sum of frequencies divided by 6 or sum of mid interval values divided by 6

The number of people voting in a polling station on election day was recorded every two hours. The following are the results.

Time	$800-$ 1000	$1000-$ 1200	$1200-$ 1400	$1400-$ 1600	$1600-$ 1800	$1800-$ 2000	$2000-$ 2200
Number of people	200	300	250	350	800	550	350

[Note 1000-1200 means 1000 or later but before 1200, etc.]
(i) Draw up a cumulative frequency table.
(ii) On graph paper construct the ogive.
(iii) Use your graph to estimate the number of people who cast their vote between 1700 and 1900.
(c) (i)

(c) (i)	5 marks					Att 2	
Time	$\begin{gathered} 800- \\ 1000 \end{gathered}$	$\begin{aligned} & 800- \\ & 1200 \end{aligned}$	$\begin{aligned} & 800- \\ & 1400 \end{aligned}$	$\begin{aligned} & 800- \\ & 1600 \end{aligned}$	$\begin{gathered} 800- \\ 1800 \end{gathered}$	$\begin{aligned} & 800- \\ & 2000 \end{aligned}$	$\begin{aligned} & 800- \\ & 2200 \end{aligned}$
Number of people	200	500	750	1100	1900	2450	2800

Blunders (-3)
B1 Omits any number or puts numbers in wrong place
Slips (-1)
S1 Arithmetic slips to a max of -3

Attempts (2 marks)

A1 Any one value filled in correctly into table
A2 Any indication of addition of frequencies
Worthless (0)
W1 Copies table and stops
(c) (ii)

Blunders (-3)
B1 Incorrect scales
B2 Plots points but does not join them
B3 Draws a 'cumulative' histogram
B4 Points joined with straight lines
B5 Draws trend graph from original table
Slips (-1)
S1 Each incorrect plot
S2 Each point omitted
Attempts (3 marks)
A1 Draws axes and stops
(c) (iii)

5 marks
Att 2
(iii) $2175-1500=675$

* Accept answer consistent with candidate's ogive with a tolerance of ± 200
* Trend graph or cumulative histogram in (c) (i) attracts attempt mark at most in (c) (ii).

Blunders (-3)

B1 Line drawn from incorrect starting point of correct axis (once only)
B2 No subtraction of values indicated
Slips (-1)
S1 Work correct but outside tolerance
S2 Adds both values
Attempts (2 marks)
A1 Graphical indication, but number not stated

[^0]: Steps 1 and 2 may be indicated on diagram

