QUESTION 1

Part (a)	10 marks	Att 3
Part (b)	$20(10,10)$ marks	Att 6
Part (c)	$20(10,10)$ marks	Att 6
Part (a)	10 marks	Att 3

4 The perimeter of a rectangle is 200 cm . If the length : breadth $=3: 2$, find the area of the rectangle.
(a) 10 marks
Att 3

$$
\begin{array}{lll}
P=2(3 x+2 x)=200 \quad \text { step } 1 & \text { or } & P=10 x=200 \Rightarrow x=20 \\
\Rightarrow 5 x=100 \Rightarrow x=20 \quad \text { step } 2 & \Rightarrow L=3 x=60: B=2 x=40 & \text { step } 2 \\
A=6 x^{2}=6(400)=2,400 \mathrm{~cm}^{2} \text { step } 3 & \Rightarrow A=L x B=60 \times 40=2,400 & \text { step 3 }
\end{array}
$$

B1 Each step incorrect or omitted
S1 Arithmetic slips
A1 Area formula e.g. $2 \times 3=6 \quad$ A2 Diagram with 2 and/or 3 shown
W1 Rectangle with no figures

Part (b) $20(10,10)$ marks Att 3,3

A solid cone has a vertical height 6 cm . The slant height is 7.5 cm .
(i) Find the radius of its base.
(ii) Find the total surface area in cm^{2}.

Give your answer correct to three significant figures.
(b) (i)

10 marks
Att 3

$\mathrm{r}^{2}+6^{2}=7 \cdot 5^{2}$	step1
$\Rightarrow \quad \mathrm{r}^{2}=7 \cdot 5^{2}-6^{2}=56.25-36$	step 2
$\Rightarrow \quad \mathrm{r}=4 \cdot 5($ or $\sqrt{20 \cdot 25})$	step3

B1 Each step incorrect or omitted
S1 Numerical slips
A1 Some effort at Pythagoras
A3 Right-angled triangle with correct figures

B2 Incorrect substitution into correct formula
A2 Correct formula but no substitution

$$
\begin{aligned}
& \text { T.S.A. }=\pi \mathrm{rl}+\pi \mathrm{r}^{2} \\
& \begin{array}{cc}
=\pi \times 4.5 \times 7.5+\pi \times 4.5^{2}=33.75 \pi+20.25 \pi & \text { step } 1 \\
=54 \pi=169.56(169.668,169.646,169.714) & \\
=170 & \text { step } 3
\end{array}
\end{aligned}
$$

* Accept candidate's answer from (b)(i)

B1 Each step incorrect or omitted
B3 Each part calculated but not added

B2 Leaves answer in terms of pye
B4 Uses one formula of step1 and completes correctly

S2 Failure to round off or does it wrongly

S1 Numerical slips
A1 One or other of the formulae with some substitution and stops
A2 Indication of addition of some relevant formulae (must have π) and stops
A3 Substitutes into some relevant formula (π in it) \& stops: If continues correctly merits 4 m
W1 $\pi \mathrm{rl}$ and/or $\pi \mathrm{r}^{2}$ and stops (i.e. no addition shown)

Part (c)
$20(10,10)$ marks
Att 3,3
(i) A container is in the shape of a cylinder on top of a hemisphere as shown. The cylinder has a radius of 6 cm and the container has a height of 20 cm .
(4) Calculate the volume of the container in terms of π.

(c) (i)

10 marks

Att 3

$$
\begin{array}{rlrl}
\mathrm{V} & =\pi \mathrm{r}^{2} \mathrm{~h}+\frac{2}{3} \pi \mathrm{r}^{3} & & \text { step } 1\left(\text { Accept } \frac{2}{8} \pi \mathrm{r}^{3} \text { or } \frac{1}{4} \pi \mathrm{r}^{3}\right) \\
& =\pi 6^{2} \times 14+\frac{2}{3} \pi 6^{3} & \text { step } 2 & 504 \pi+144 \pi=648 \pi
\end{array}
$$

B1 Each step incorrect or omitted
B3 Incorrect relevant formula e.g. $\frac{4}{3} \pi \mathrm{r}^{3}$
S1 Numerical slips
A1 Either formula with some substitution
A3 $\frac{2}{3} \pi \mathrm{r}^{3}$ and stops

B2 Incorrect height e.g. 20 or 17

S2 Answer not in terms of π (2034.72)
A2 Height $=14$ or 17 \& stops

A4 One formula correctly calculated merits the attempt mark at most
(ii) One third of the volume of the container is filled with water.

4D Calculate, d, the depth of the water in the container.

1 Vol. of water $=\frac{1}{3}(648 \pi)=216 \pi$ step 1 :
\Rightarrow Vol of water in cyl $=216 \pi-144 \pi$ (hemisphere) $\Rightarrow 72 \pi=\pi \mathrm{r}^{2} \mathrm{~h}$ step 2
$\Rightarrow 36 \mathrm{~h}=72 \Rightarrow \mathrm{~h}=2 \quad \Rightarrow \mathrm{~d}=2+6=8 \quad$ step 3
$\begin{array}{llll}2 & \frac{2}{3}(648 \pi)=432 \pi & \text { step } 1 & \Rightarrow \pi r^{2} h=432 \pi\end{array} \quad$ step2

- Accept candidate's work from (c)(i)

B1 Each step incorrect or omitted B2 Blunders as in (c)(i)
B3 $\pi \mathrm{r}^{2} \mathrm{~h}=216 \pi(\operatorname{method} 2)$ and continues $(\mathrm{h}=6, \mathrm{~d}=14)$
B4 Answer 2 or 12 i.e. no addition or subtraction

S1 Numerical slips

A1 Attempts as in (c) (i)
A2 Indicates division by 3 e.g. $\frac{20}{3}$
Note Accept $\mathrm{r}=3$ in this part if $\mathrm{h}=17$ in (c)(i)

QUESTION 2

Part (a)	$15(5,10)$ marks	Att 5
Part (b)	$15(10,5)$ marks	Att 5
Part (c)	$20(5,5,5,5)$ marks	Att 8
Part (a)	$10(5,5)$ marks	Att 2,2

$a(3,-2)$ and $b(-1,1)$ are two points.
(i) Find the co-ordinates of the midpoint of $[a b]$.
(ii) Find $|a b|$.
(a) (i)

5 marks
Att 2
$\frac{3-1}{2}, \frac{-2+1}{2}=\left(1,-\frac{1}{2}\right)$

B1 Incorrect mid-point formula \& continues
B2 Mixes $x^{s} \& y^{s}$ in both
B3 Error in signs
A1 Writes mid-point formula and/or substitutes \& stops
A2 Some attempt at addition or subtraction \& stops
A3 Any revelant graphical attempt (once only)
(a) (ii)

10 marks
Att 3

$$
|a b|=\sqrt{(3+1)^{2}+(-2-1)^{2}}=\sqrt{16+9}=5
$$

B1 Incorrect distance formula \& continues
B2 Error in signs
A1 Writes distance formula \& stops
A2 Some attempt at addition or subtraction \& stops

Part (b)
$20(10,10)$ marks
Att 3,3
(b) The line $3 x-2 y+9=0$ cuts the x-axis at p and the y-axis at q.
(i) Find the co-ordinates of p and the co-ordinates of q.
(ii) Find the co-ordinates of the image of p under the central symmetry in q.
(b) (i)

10 marks
Att 3

$$
\begin{array}{lll}
\mathrm{y}=0 \Rightarrow 3 \mathrm{x}-0+9=0 & \mathrm{x}=-3 & \mathrm{p}(-3.0) \\
\mathrm{x}=0 \Rightarrow 0-2 \mathrm{y}+9=0 & \mathrm{y}=4 \frac{1}{2} & \mathrm{q}\left(0,4 \frac{1}{2}\right)
\end{array}
$$

S1 One point correct, the other the wrong way round
A1 States $\mathrm{y}=0$ for p and/or $\mathrm{x}=0$ for q and stops
A2 Attempts to get point(s) on the line
W1 Draws any line and stops
(b) (ii)

5 marks
Att 2
$\mathrm{p}(-3,0) \rightarrow \mathrm{q}\left(0,4 \frac{1}{2}\right)$ xup 3 , y up $4 \frac{1}{2}$
$\frac{-3+x}{2}, \frac{0+y}{2}$

$\Rightarrow \mathrm{p}^{1}=\left(0+3,4 \frac{1}{2}+4 \frac{1}{2}\right)$	step 1	$\frac{-3+\mathrm{x}}{2}=0$	$\frac{0+\mathrm{y}}{2}=4 \frac{1}{2}$	step 1
$=(3,9)$	step2	$\Rightarrow \mathrm{x}=3$	$\mathrm{y}=9$	step 2

Or $(-3,0) \rightarrow\left(0,4 \frac{1}{2}\right) \rightarrow(3,9)$ for full marks
B1 Each step incorrect or omitted
B2 Incorrect sign in change of x and/or y and continues
B3 Incorrect direction of translation (gets image of q in p)
B4 Change in x applied to y and vice versa
S1 Incorrect numerical change each time (must be in the correct direction)
A1 Determines one change \& stops
A2 Correct graphical solution
A3 Invents p and q and carries out symmetry correctly
A4 Gives explanation of central symmetry and stops e.g. finds symmetry in the origin of any point A5 Gets the mid-point of [pq] \& stops
A6 Mid-point formula \& stops
Note: This diagram merits 2 marks
However if arrows are shown it merits 5 marks

L is the line $3 x-y-11=0$.
(i) Find the slope of L.
(ii) The line K contains the points $a(-3,0)$ and $b(6, r)$.
K is perpendicular to L.
Land the value of r.
(iii) Find the coordinates of the image of the point b under the axial symmetry in the line L.
(c) (i)

5 marks
Att 2

$$
\begin{gathered}
3 x-y-11=0 \\
-y=-3 x+11 \\
m=3
\end{gathered}
$$

$$
\begin{aligned}
\mathrm{m} & =-\frac{a}{b} \\
& =\frac{-3}{-1} \\
& =3
\end{aligned}
$$

$(3,-2),(4,1)$ or other points

$$
\frac{1+2}{4-3}
$$

$$
\mathrm{m}=3
$$

B1 Error in manipulation
B2 Error in formula
B3 Selects a point that is not on the line \& continues
A1 Correct formula and stops.
A2 Finds correct point(s) on the line and stops.
A3 Says $\mathrm{x}=0$ at the Y -axis and/or $\mathrm{y}=0$ at the X -axis and stops.
(c) (ii)
$\mathrm{m}=\frac{\mathrm{r}-0}{6-(-3)}=-\frac{1}{3} \quad \Rightarrow \frac{\mathrm{r}}{9}=-\frac{1}{3} \quad \Rightarrow r=-3 \quad$ or
$\mathrm{K}:(-3,0), \mathrm{m}=-\frac{1}{3} \Rightarrow \mathrm{y}-0=-\frac{1}{3}(\mathrm{x}+3) \Rightarrow \mathrm{x}+3 \mathrm{y}+3=0: \mathrm{b} \in \mathrm{K} \Rightarrow 6+3 \mathrm{r}+3=0 \Rightarrow \mathrm{r}=-3$ or
$\mathrm{K}: \mathrm{x}+3 \mathrm{y}+\mathrm{k}=0,(-3,0) \in \mathrm{K} \Rightarrow-3+3(0)+\mathrm{k}=0 ; \Rightarrow \mathrm{k}=3$ giving $\mathrm{K}: \mathrm{x}+3 \mathrm{y}+3=0 \&$ continues

* Allow candidate's work from (c)(i)

B1 Incorrect slope of K
B2 Incorrect formula
B3 Switches x and y in substitution
B4 Substitutes correctly for x and y but no slope
S1 Incorrect sign after substituting and continues
A1 States $m_{1} m_{2}=-1$ and stops
A2 Gets $m=-\frac{1}{3}$ and stops
A3 Correct line formula and stops
A4 Correct graphical solution
(c) (iii) (a)
$\mathrm{L} \cap \mathrm{K}: 3 \mathrm{x}-\mathrm{y}-11=0 \times 3 \Rightarrow 9 \mathrm{x}-3 \mathrm{y}=33$
$x+3 y+3=0 \quad \Rightarrow x+3 y=-3 \Rightarrow 10 x=30 \Rightarrow x=3$ and $y=-2 \Rightarrow(3,-2)$
*Accept candidate's work from (c) (ii)
B1 Error in manipulation of equations
B2 Incorrect or no substitution for second value
A1 Any correct step and stops
A2 Correct graphical solution
A3 Attempts to get a point on L or K
(c) (iii) (b) 5 marks

Att 2
$(6,-3) \rightarrow(3,-2) \quad \mathrm{x}$ down 3 and y up $1 \Rightarrow(3,-2) \rightarrow(0,-1)=\mathrm{S}_{\mathrm{L}} \mathrm{b}$
B1 Incorrect direction of translation
B2 Incorrect sign in change of x and/or y and continues
S1 Numerical slips
A1 States correct translation \& stops
A2 Correct graphical solution
A3 Invents point of intersection and carries out symmetry correctly

QUESTION 3

Part (a)	10 marks	Att 3
Part (b)	20 marks	Att 6
Part (c)	20 marks	Att 6
Part (a)	10 marks	Att 3

In the parallelogram $a b c d$,
$|\angle a b c|=114^{\circ}$
and $|\angle d a c|=47^{\circ}$.

\& \quad Find $|\angle b a c|$.
(a)

10 marks
Att 3

| $\|\angle \mathrm{acb}\|=47^{\circ}($ alt $)$ | step 1 | | |
| :---: | :---: | :---: | :---: | :---: |
| $\Rightarrow\|\angle \mathrm{bac}\|=180^{\circ}-\left(114^{\circ}+47^{\circ}\right) \quad$ step 2 $\quad \Rightarrow\|\angle \mathrm{bac}\|=180^{\circ}-161^{\circ}=19^{\circ}$ | step 3 | | |
| or $114 \times 2=228 ; 360-228=132$ | Step 1: $132 \div 2=66 \quad$ step 2 | $66-47=19$ | step 3 |

B1 Each step incorrect or omitted
B2 Treats triangles as isosceles
B3 Uses 360° for 180°
S1 Numerical slips
A1 Indicates angles in triangle total 180° or angles in parallelogram total 360° \& stops
A2 Mentions alternate angles \& stops
A3 States some parallelogram property \& stops e.g. opposite angles are equal
W1 Treats [ac] as bisector of \angle bad getting $\angle \mathrm{bac}=47^{\circ}$
W 2 treats $\angle \mathrm{bad}=90^{\circ}$ getting $\angle \mathrm{bac}=43^{\circ}$

Part (b)
Att 3,3

In the parallelogram pqrs, the points t and w are on the diagonal $[p r]$ such that $|\angle p q t|=|\angle w s r|$.
(i) Prove that $|p t|=|w r|$.

(ii) Hence, or otherwise, show that the triangles $p s w$ and $q t r$ are congruent.

Compare $\Delta \mathrm{pqt}$ and $\Delta \mathrm{wsr}$

$\|\angle \mathrm{pqt}\|=\|\angle \mathrm{wsr}\| \begin{array}{l}\text { (given) } \\ \|\mathrm{pq}\|=\|\mathrm{sr}\| \quad \text { and }\|\angle \mathrm{qpt}\|=\|\angle \mathrm{wrs}\| \text { (alt) } \quad \text { step 1 } \\ \Delta \mathrm{pqt} \equiv \Delta \mathrm{wsr}(\text { orASA }) \Rightarrow\|\mathrm{pt}\|=\|\mathrm{wr}\| \quad \text { step 3 }\end{array}$

B1 Each step incorrect or omitted
B2 Each incomplete step
A1 Diagram with the given pair of equal angles indicated \& stops
A2 Identifies the two congruent triangles \& stops
(b) (ii)

10 marks
Att 3

SSS step $1\|\mathrm{pw}\|=\|\mathrm{rt}\|$ as $\|\mathrm{pw}\|=\|\mathrm{pt}\|+\|\mathrm{tw}\|$ and $\|\mathrm{rt}\|=\|\mathrm{rw}\|+\|\mathrm{tw}\|$ step $2\|\mathrm{ps}\|=\|\mathrm{qr}\|$ (opp. sides) $\|\mathrm{sw}\|=\|\mathrm{q} t\|($ from (b)(i)) step $3 \Rightarrow \Delta \mathrm{psw} \equiv \Delta \mathrm{qrt}$ (SSS)	SAS step $1 \mid \angle$ spw $\|=\| \angle$ trq \mid (alt) $\|\mathrm{ps}\|=\|\mathrm{qr}\|$ step $2\|\mathrm{pw}\|=\|\mathrm{rt}\|$ step 1 opposite step $3 \Delta \mathrm{psw}=\Delta \mathrm{qrt}(\mathrm{SAS})$ Can also be proved by ASA

B1 Each step incorrect or omitted
B2 Each step incomplete
A1 Identifies both triangles e.g. draws them separately
A2 Diagram with pair of equal angles indicated

Prove that if two triangles are equiangular, the lengths of corresponding sides are in proportion.
(c)

Given: $\Delta \mathrm{abc}$ and Δ def with

$$
|\angle \mathrm{A}|=|\angle \mathrm{D}|:|\angle \mathrm{B}|=|\angle \mathrm{E}|:|\angle \mathrm{C}|=|\angle \mathrm{F}|
$$

R.T.P. $\frac{|\mathrm{ab}|}{|\mathrm{de}|}=\frac{|\mathrm{bc}|}{|\mathrm{ef}|}=\frac{|\mathrm{ac}|}{|\mathrm{df}|}$ step 1

Const. Mark x on [ab] such that $|\mathrm{ax}|=|\mathrm{de}|$
Mark y on [ac] such that $|a y|=|d f|$ step 2

Proof : Δ axy and Δ def are congruent

$$
\begin{array}{ll}
|\angle \mathrm{axy}|=|\angle \mathrm{E}| & \text { step 3 } \\
\Rightarrow|\angle \mathrm{axy}|=|\angle \mathrm{abc}| \Rightarrow \mathrm{xy} / / \mathrm{bc} & \text { step } 4 \\
\Rightarrow \frac{|\mathrm{ab}|}{|\mathrm{ax}|}=\frac{|\mathrm{ac}|}{|\mathrm{ay}|} & \text { step } 5 \\
\Rightarrow \frac{|\mathrm{ab}|}{|\mathrm{de}|}=\frac{|\mathrm{ac}|}{|\mathrm{df}|} \Rightarrow \frac{|\mathrm{ab}|}{|\mathrm{de}|}=\frac{|\mathrm{bc}|}{|\mathrm{ef}|}=\frac{|\mathrm{ac}|}{|\mathrm{df}|} & \text { step 6 }
\end{array}
$$

B1 Each step incorrect or omitted
A1 Draws two separate triangles and indicates equal angles
A2 Indicates the second diagram of the proof \& stops
A3 Any knowledge of the theorem shown

QUESTION 4

Part (a)	10 marks	Att 3
Part (b)	20 marks	Att 6
Part (c)	20 marks	Att 7
Part (a)	10 marks	Att 3

A circle, centre c, has a chord $[a b]$ of length 8.
d is a point on $[a b]$ and $c d$ is perpendicular to $a b$.
$|c d|=3$.
\& Find the length of a diameter of the circle.

(a)

10 marks

Att 3
$|\mathrm{ca}|^{2}=3^{2}+4^{2}=25 \quad$ step $1 \quad|\mathrm{ad}|=4$
$\Rightarrow|\mathrm{ca}|=5(\sqrt{25})=\mathrm{r} \quad$ step $2 \quad|\mathrm{ca}|$ or $\mathrm{r}=5$
\Rightarrow diameter $=10(2 \sqrt{25}) \quad$ step $3 \quad$ diameter $=10$
Note : Award full marks for
Diagram with $3,4,5$ shown \Rightarrow diameter $=10$

B1 Each step incorrect or omitted
B2 Misuse of Pythagoras or uses 8 for 4
S1 Numerical slips
A1 States or implies Pythagoras \& stops
A2 States theorem about line through the centre bisecting the chord
A3 Indicates $|\mathrm{ac}|=|\mathrm{bc}|$ \& stops

Part (b)
$20(10,10)$ marks
Att 3,3
(i) Prove that a diagonal bisects the area of a parallelogram.
(ii) Show how to construct the circumcircle of a triangle.

All construction lines must be clearly shown.
(b) (i)

Given; Parm abcd with diagonal ac
To prove : area $\Delta \mathrm{abc}=$ area $\Delta \mathrm{adc}$ step 1
Proof : $|\mathrm{ac}|=|\mathrm{ac}|$
$|\mathrm{ab}|=|\mathrm{dc}|$
$|\mathrm{ad}|=|\mathrm{bc}|$
step 2
$\Rightarrow \Delta \mathrm{abc} \equiv \Delta \mathrm{adc} \Rightarrow$ area $\Delta \mathrm{abc}=$ area $\Delta \mathrm{adc}$ step 3

Note
Candidate may use half the base by the perpendicu lar height

- Accept step 2 clearly indicated on diagram
- Memorised proof with no diagram: award full marks if all steps are given

B1 Each step incorrect or omitted
B2 Proves theorem "opposite sides and angles in a parallelogram are equal"
A1 Parallelogram with a diagonal drawn \& stops
W1 Any theorem other than in B2
W2 A parallelogram with nothing else
(b) (ii)

10 marks
Att 3

Construction: Draw a triangle abc. With compass and suitable radius length bisect any two sides of the triangle. Let the bisectors meet at the point $\mathrm{k} . \mathrm{k}$ is the circumcentre of the triangle. With k as centre draw a circle passing through the points a, b and c . This circle is the circumcircle of the triangle abc.

One side bisected step 1: Second side bisected step 2: Circle drawn step 3

- Allow a tolerance of $\mathbf{2 m m}$ for the vertices
- Arcs must be shown or other construction method

B1 Each vertex not on circle (i.e. outsde tolerance)
A1 Circumcircle and triangle drawn with no construction lines shown
A2 Bisects one angle of the triangle \& stops
MR Incircle drawn with construction lines clearly shown
W1 Triangle with incircle drawn but no construction shown
a, d, b, c are points on a circle, as shown.
o is the centre of the circle.
$|\angle a c b|=50^{\circ}$ and $|a d|=|d b|$.
Find
(i) $|\angle a o b|$
(ii)

(iii) By joining a to b, or otherwise,

$$
\text { find }|\angle o a d| \text {. }
$$

(c) (i)

5 marks
Att 2

$$
|\angle \mathrm{aob}|=100^{\circ} \text { or } 260^{\circ}
$$

* Accept correct answer given on a diagram or answer given as 2(50)

B1 25° or 335°
A1 $|\angle \mathrm{aob}|=2|\angle \mathrm{acb}| \&$ stops
A2 c joined to o in diagram
W1 Diagram reproduced without modification
(c) (ii)

$$
\begin{aligned}
& |\angle \mathrm{adb}|=180^{\circ}-50^{\circ}=130^{\circ} \quad \text { OR } \\
& \text { Reflex angle }|\angle \mathrm{aob}|=360^{\circ}-100^{\circ}=260^{\circ} \Rightarrow|\angle \mathrm{adb}|=\frac{1}{2}\left(260^{\circ}\right)=130^{\circ}
\end{aligned}
$$

* Work with candidate's answer in (c)(i)

B1 50° or 90° or 80° with work shown
S1 Numerical slips
A1 $|\angle \mathrm{acb}|+|\angle \mathrm{adb}|=180^{\circ}$ or similar \& stops

W1 Any other angle other than at B1
W2 Diagram without modification

In isosceles $\Delta \mathrm{aob}|\angle \mathrm{aob}|=100^{\circ} \Rightarrow|\angle \mathrm{oab}|=\frac{1}{2}\left(80^{\circ}\right)=40^{\circ}$ step 1
In isosceles $\Delta \mathrm{adb}|\angle \mathrm{adb}|=130^{\circ} \Rightarrow|\angle \mathrm{dab}|=\frac{1}{2}\left(50^{\circ}\right)=25^{\circ}$ step 2: $40^{\circ}+25^{\circ}=65^{\circ}$ step 3
Or
$100^{\circ}+130^{\circ}=230^{\circ}$ step $1: \quad 360^{\circ}-230^{\circ}=130^{\circ}$ step 2: $\quad \frac{130^{\circ}}{2}=65^{\circ}$ step 3
B1 Each step incorrect or omitted
B2 Sum of angles in triangle $\neq 180^{\circ}$
A1 $|\mathrm{ao}|=|\mathrm{bo}| \&$ stops
A2 Two angles in an isosceles triangle are equal

A3 Angles in a triangle total 180°

QUESTION 5

Part (a)	10 marks	Att 3
Part (b)	20 marks	Att 7
Part (c)	20 marks	Att 6
Part (a)	10 marks	Att 3

LD If $\tan A=-1$, find the two values for the angle A, where $0^{\circ} \leq A \leq 360^{\circ}$.
(a) 10 marks Att 3

Angle of reference is $45^{\circ}: \quad$ step 1
$\Rightarrow \mathrm{A}=180^{\circ}-45^{\circ}$ or $360^{\circ}-45^{\circ}$ step $2 \Rightarrow \mathrm{~A}=135^{\circ}$ and 315° step 3
B1 Incorrect ACTS
B2 Incorrect use of 180° or 360°
B3 Uses 90° and/or 270°
S1 Numerical slips
S2 Correct angle outside range
A1 Uses calculator to get -45° \& stops
A2 Axes drawn with at least one angle or ACTS indicated
A3 -0.0174 (i.e. Tan(-1))
A4 Incorrect mode on calculator
A5 $\operatorname{Tan} \mathrm{A}=\frac{\mathrm{O}}{\mathrm{A}}$

Part (b)
$20(5,5,10)$ marks
Att 2,2,3
(i) $\quad a b c$ is a triangle where $|b c|=6$.
d is a point on $[a b]$ and $c d$ is perpendicular to $a b$, where $|c d|=4$ and $|a d|=9$.

\& Find $|\angle c b d|$, correct to the nearest degree, and find $|\angle c a d|$, correct to the nearest degree.
(ii) $\quad X$ is an acute angle such that $\sin X=\frac{1}{2}$.

Find the value of $\cos X$ in surd form.
$\operatorname{Sin} \angle \operatorname{cbd}=\frac{4}{6}$ step $1|\angle \operatorname{cbd}|=41 \cdot 8^{\circ}=42^{\circ}$ step 2
Tan $\angle \mathrm{cad}=\frac{4}{9}$ step $1 \Rightarrow|\angle \mathrm{cad}|=23 \cdot 9^{\circ}=24^{\circ}$ step2

Other ratios may be used

To be applied to parts (b) and (c)

B1 Each step incorrect or omitted
B3 Incorrect ratio in Sine Rule
B5 Error in transposition
B7 Decimal error

B2 Incorrect ratio (Sin, Cos or Tan)
B4 Error in cross-multiplication
B6 Takes $1^{\circ}=100^{\prime}$
B8 Failure to calculate

B9 Reads wrong page of the tables or calculator in the wrong mode
B10 Early rounding off which affects the accuracy of the answer
Mr 1 Fails to distinguish between degrees and minutes and decimal degrees
S1 Numerical slips
S2 Fails to round off or rounds off incorrectly each time
S3 Slip reading tables e.g. wrong column
A1 Partly filled in Sine Rule and stops
A2 Writes down Sin, Cos or Tan ratio \& stops
A3 Finds $|\mathrm{ac}|$ or $|\mathrm{db}|$ and stops in (b) (i)
A4 Triangle cdb and/or acd drawn with sides identified - attempt 2 for each
(b) (ii)

10 marks

Att 3
X is acute and $\sin X=\frac{1}{2} \Rightarrow|\angle X|=30^{\circ}: \Rightarrow \operatorname{Cos} X=\frac{\sqrt{3}}{2}$ or

Diagram or $\operatorname{Sin} X=\frac{1}{2}=\frac{0}{h} \quad$ step 1
$|y|^{2}=2^{2}-1^{2}=3 \Rightarrow|y|=\sqrt{3} \quad$ step 2

$\Rightarrow \operatorname{Cos} \angle \mathrm{X}=\frac{\sqrt{3}}{2} \quad$ step 3

B11 Each step incorrect or missing
B12 Error in Theorem of Pythagoras
B13 Answer not in surd form
A5 Correct formula for Theorem of Pythagoras \& stops
A6 Diagram with 1 and 2 but no X \& stops
(i) In the triangle $p q r$,
$|p q|=10,|p r|=12$ and
$|\angle p q r|=42^{\circ}$.
Find $|\angle p r q|$,
giving your answer correct to one decimal place.

(ii) Calculate the area of the triangle $p q r$, giving your answer correct to one decimal place.
(c) (i)

10 marks

Att 3

$$
\begin{gathered}
\frac{\operatorname{Sin} \angle \mathrm{prq}}{10}=\frac{\operatorname{Sin} \angle 42^{\circ}}{12} \quad \text { step } 1 \Rightarrow \operatorname{Sin} \angle \mathrm{prq}=\frac{10 \cdot \operatorname{Sin} \angle 42^{\circ}}{12}=.5576 \quad \text { Step } 2 \\
\Rightarrow|\angle \mathrm{prq}|=33 \cdot 89=33.9 \quad \text { step } 3
\end{gathered}
$$

B1 Each step incorrect or missing
W1 Treats triangle pqr as a right-angled triangle
(c) (ii)

10 marks
Att 3

$$
\begin{aligned}
& \quad|\angle \mathrm{rpq}|=180^{\circ}-\left(42^{\circ}+33 \cdot 9^{\circ}\right)=104 \cdot 1^{\circ} \text { step } 1 \\
& \text { Area } \Delta \mathrm{pqr}=\frac{1}{2} \cdot 10 \cdot 12 \cdot \sin 104 \cdot 1^{\circ} \text { step } 2=58 \cdot 19=58 \cdot 2 \text { step } 3
\end{aligned}
$$

*Note: Candidate may get \mid rq| by the sine Rule and get the area using a different angle (17.39)
B14 Uses only one side $\frac{1}{2}|\mathrm{rp}| \operatorname{Sin} 104 \cdot 1^{\circ}$
B15 Incorrect formula e.g. Cos for Sin or omits the half
B16 Halves the $104 \cdot 1^{\circ}$ in the $\operatorname{Sin} \angle 104 \cdot 1^{\circ}$ and continues
Note: $\frac{1}{2} \cdot 10.12 . \operatorname{Sin} 42^{\circ}$ is double blunder for 4 m and further slip -1 if no round off, giving 3 m And the same for $\frac{1}{2} 10.12 . \operatorname{Sin} 33 \cdot 9^{\circ}$

A7 Gets $|\mathrm{rq}|=17 \cdot 39$ and stops A8 Some substitution in the area formula $\frac{1}{2} \mathrm{absinC}$

QUESTION 6

Part (a)	$10(5,5)$ marks	Att 4
Part (b)	20 marks	Att 8
Part (c)	20 marks	Att 8
Part (a)	$10(5,5)$ marks	Att 2,2

The table shows the results of a school survey into students' favourite types of music.

Music Type	Pop	Rock	Classical	Other
Number of students	45	25	5	15

40 Draw a pie-chart to illustrate the above information, showing clearly how you calculate the size of each angle.

B1 360° not used in calculation
B2 Inverted (incorrect) fraction
B3 Inaccurate drawing allowing for tolerance of 5°
S1 Numerical slips (if not B2)
S2 Each missing or incorrect angle to a max of 3
S3 Each missing or incorrect sector to a max of 3
A1 Gets 90 \& stops
A2 Indication of 360°
A3 Any circle
A4 Some other diagram e.g. Bar-chart (once only)

The cumulative frequency table shows the amount of time spent studying in a certain week by 100 Leaving Certificate students.

Time in hours	≤ 2	≤ 4	≤ 6	≤ 8	≤ 10
Number of students	10	28	60	85	100

(i) On graph paper construct the ogive.

Use your graph to estimate:
(ii) the median
(iii) the inter-quartile range
(iv) the number of students who spent 9 hours or more studying.
(b)
$20(5,5,5,5)$ marks
Att ,2,2,22
(i)
(ii) Median at 5.4
(iii) $3^{\text {rd }} \mathrm{Q}$ at 7 ;
$1^{\text {st }} \mathrm{Q}$ at 3.6
$\mathrm{IQR}=3.4 \mathrm{hrs}$.
(iv) ≥ 9 hours 7

- No penalty for not joining (0,0) to $(\mathbf{2 , 1 0})$

Ogive

B1 Incorrect scales once only
B2 Draws a cumulative Histogram
B3 Plots points but does not join them or joins by line segments
B4 Draws a cumulative cumulative graph
S1 Each incorrect plot or point omitted
A1 Draws axes \& stops

Median

Accept correct answer without horizontal or vertical lines
Accept median with candidate's ogive within tolerance ± 0.2 for his correct answer
B1 Mean for median (21.82) B2 Draws horizontal from wrong point e.g. 5
B3 Draws horizontal line only (no penalty if the correct answer is given)
B4 Draws perpendicular from Time 5 hours to get the median $=41$
S1 Lines drawn correctly and median not given or outside tolerance for the graph
A1 Indicates use of mid-value (50 or 5) A2 Some knowledge of median e.g. $\frac{100}{5}$

Inter-quartile range

Accept the answer consistent with the candidate's graph with tolerance $\pm 0 \cdot 2$

B1 Uses wrong axes $\mathrm{x}=2.5,7.5$
B2 No subtraction
B3 Correct lines drawn on the graph but no values given
S1 $3 \cdot 6-7=-3 \cdot 4$
S2 Work correct but outside tolerance
A1 Finds 25 or 75 \& stops

Number of students with 9 hours or more study

Accept answer consistent with the candidate's graph with a tolerance ± 2
B1 Line drawn from wrong starting point of correct axes
B2 No subtraction
B3 Uses 9 on the vertical axis
B4 Draws a vertical line from 9 \& stops
S1 Work correct but outside tolerance
S2 $100+93$ or $93-100$
W1 Line drawn from incorrect starting point on correct axis \& stops

Note

Diagram as shown in the solution merits $5,4,2,2=13$ marks

Third year students were asked how much pocket money they spent in a certain week.
The results are shown in the frequency distribution table below.

Amount of pocket money in $€$	$0-5$	$5-10$	$10-15$	$15-20$	$20-25$
Number of students	4	22	14	x	6

[Note: 5 - 10 means $€ 5$ or more but less than $€ 10$, etc.]
Taking mid-interval values it was found that the mean amount of pocket money spent in that week was $€ 11 \cdot 10$.
(0) Find the value of x.
(c) Step 1

| 2.5 | 7.5 | 12.5 | 17.5 | 22.5 |
| :--- | :--- | :--- | :--- | :--- | :--- |

B1 Mid-interval values not used e.g. $0,5,10,15,20$ or $5,10,15,20,25$
S1 Each arithmetic slip to max of 3
S2 Each incorrect mid-interval value to max of 3
(c) Step 2

5 marks
Att 2

$$
\begin{aligned}
& \quad \frac{(2 \cdot 5 \times 4)+(7 \cdot 5 \times 22)+(12 \cdot 5 \times 14)+(17 \cdot 5 \times x)+(22 \cdot 5 \times 6)}{46+x}=11 \cdot 10 \\
& \text { or } \quad \frac{485+17 \cdot 5 \mathrm{x}}{46+x}=11 \cdot 1
\end{aligned}
$$

- Accept either of Left Hand sides for 5m

B1 Adds instead of multiplying in numerator
B2 Multiplies instead of adding in denominator
B3 Uses 5 or 5 x in denominator
B4 Uses 46x in denominator
(c) Step 3

$$
485+17.5 \mathrm{x}=510.6+11.1 \mathrm{x}
$$

W1 $10 \cdot 54+17.5 \mathrm{x}=11 \cdot 1$
W2 No cross multiplication
(c) Step 4

$$
\begin{aligned}
17 \cdot 5 \mathrm{x}-11 \cdot 1 \mathrm{x} & =510 \cdot 6 \cdot 485 \\
\Rightarrow 6 \cdot 4 \mathrm{x} & =25 \cdot 6 \\
\Rightarrow \mathrm{x} & =\frac{25 \cdot 6}{6 \cdot 4}=4
\end{aligned}
$$

B1 Each error in cross-multiplication or transposition
B2 Decimal blunder (aplied to lines $1 \& 2$ of the proof)
S1 $x=\frac{25 \cdot 6}{6 \cdot 4}$ accept for $4 \mathrm{~m} \&$ if continues to get 4 award 5 m .

