Part (a) Part (b) Part (c)	10 marks 20 (10,10)marks 20 (10,10) marks		Att 3 Att 6 Att 6
Part (a)	10 marks		
Â	The perimeter of a rectangle i find the area of the rectangle.	s 200 cm. If the length : breadth = 3 :	2,
(a)	10	marks	Att 3
P = 2(3x + 2x) = 200 step 1		or $P = 10x = 200 \implies x = 20$	step 1
$\Rightarrow 5x = 100 \Rightarrow x = 20$ step 2		\Rightarrow L = 3x = 60 : B = 2 x = 40	Step 2
A = $6x^2$ = $6(400)$ = 2,400 cm ² step 3		$\Rightarrow A = L x B = 60 x 40 = 2,400$	step 3

B1 Each step incorrect or omitted

S1 Arithmetic slips

A1 Area formula e.g. $2 \times 3 = 6$ W1 Rectangle with no figures A2 Diagram with 2 and/or 3 shown

(b) (i)	10 marks	Att 3
$r^{2} + 6^{2} = 7 \cdot 5^{2}$	step1	6
$\Rightarrow r^{2} = 7 \cdot 5^{2} - 6^{2} = 56.25 - 36$	step2	7.5
$\Rightarrow r = 4 \cdot 5 (\text{or } \sqrt{20 \cdot 25})$	step3	r

- B1 Each step incorrect or omitted
- S1 Numerical slips
- A1 Some effort at Pythagoras
- A3 Right-angled triangle with correct figures
- B2 Incorrect substitution into correct formula
- A2 Correct formula but no substitution

(b) (ii)	10 marks	8	Att 3
	T.S.A. = π rl + π r ²	step 1	
	$=\pi x 4.5 x 7.5 + \pi x 4.5^{2} = 33.7$	$75 \pi + 20.25 \pi$ step2	
	$= 54\pi = 169.56$ (169.668, 169	.646, 169.714)	
	= 170	step3	
* Accept candida	ite's answer from (b)(i)		
B1 Each step incorB3 Each part calcu	rect or omitted B2 Leav lated but not added B4 Use	ves answer in terms of py s one formula of step1 an	e d completes correctly
S1 Numerical slips	S2	Failure to round off or d	oes it wrongly
A1 One or other of A2 Indication of ac A3 Substitutes into W1 π rl and/or π r	the formulae with some substitut dition of some relevant formulae some relevant formula (π in it) & ² and stops (i.e. no addition shown	ion and stops (must have π) and stops ξ stops: If continues corr n)	s ectly merits 4m
Part (c)	20 (10,10) m	arks	Att 3,3
(i) A container	is in the shape of a cylinder		
on top of a	hemisphere as shown.		- 6 cm
The cylinde	er has a radius of 6 cm	\sim	
and the con	tainer has a height of 20 cm.		T I
🖨 Calcu	late the volume of the		20 cm
conta	iner in terms of π .		↓ ↓
(c) (i)	10 marks	5	Att 3
$V = \pi r^2 h$	$+\frac{2}{3}\pi r^3$ step1 (Accept $\frac{2}{8}$	π r ³ or $\frac{1}{4}\pi$ r ³)	
-	5 0	4	

- B1 Each step incorrect or omitted
- B3 Incorrect relevant formula e.g. $\frac{4}{3}\pi$ r³
- S1 Numerical slips
- A1 Either formula with some substitution

A3 $\frac{2}{3}\pi$ r³ and stops

- B2 Incorrect height e.g. 20 or 17
- S2 Answer not in terms of π (2034.72)

- A2 Height = 14 or 17 & stops
- A4 One formula correctly calculated merits the attempt mark at most

1 Vol. of water
$$=\frac{1}{3}(648\pi) = 216\pi$$
 step 1:
 \Rightarrow Vol of water in cyl $= 216\pi - 144\pi$ (hemisphere) $\Rightarrow 72\pi = \pi r^2 h$ step 2
 $\Rightarrow 36h = 72 \Rightarrow h = 2 \Rightarrow d = 2 + 6 = 8$ step 3
2 $\frac{2}{3}(648\pi) = 432\pi$ step 1 $\Rightarrow \pi r^2 h = 432\pi$ step 2
 $\Rightarrow 36h = 432 \Rightarrow h = 12 \Rightarrow d = 20 - 12 = 8$ step 3

• Accept candidate's work from (c)(i)

B1 Each step incorrect or omitted B2 Blunders as in (c)(i)

B3 π r²h = 216 π (method 2) and continues (h = 6, d = 14)

B4 Answer 2 or 12 i.e. no addition or subtraction

S1 Numerical slips

- A1 Attempts as in (c) (i)
- A2 Indicates division by 3 e.g. $\frac{20}{3}$

Note Accept r = 3 in this part if h = 17 in (c)(i)

Part (a)	15 (5,10) marks	Att 5
Part (b)	15 (10,5) marks	Att 5
Part (c)	20 (5,5,5,5) marks	Att 8

10 (5,5) marks

Att 2,2

Part (a)		10 (5,5) marks
	a (3, - (i) (ii)	•2) and <i>b</i>	(-1, 1) are two points. Find the co-ordinates of the midpoint of [<i>ab</i>]. Find $ ab $.
(a) (i)			5 months

(a) (i)	5 marks	Att 2
$\frac{3-1}{2}, \frac{-2+1}{2} = (1, -\frac{1}{2})$		

- B2 Mixes x^s & y^s in both B1 Incorrect mid-point formula & continues
- B3 Error in signs
- A1 Writes mid-point formula and/or substitutes & stops
- A2 Some attempt at addition or subtraction & stops
- A3 Any revelant graphical attempt (once only)

(a) (ii)		10 marks	Att 3
	ab =	$\sqrt{(3+1)^2 + (-2-1)^2} = \sqrt{16+9} = 5$	

- B2 Error in signs B1 Incorrect distance formula & continues
- A1 Writes distance formula & stops
- A2 Some attempt at addition or subtraction & stops

Part (b)			20 (10,10) marks	Att 3,3
(b)	The li	ine $3x - 2$	y + 9 = 0 cuts the x-axis at p and the y-axis at q.	
	(i)		Find the co-ordinates of <i>p</i> and the co-ordinates	s of q .
	(ii)		Find the co-ordinates of the image of p under the symmetry in q .	the central

(b) (i)		10 marks	Att 3
$y=0 \implies 3x-0+9=0$	x = - 3	p(-3.0)	
$\mathbf{x} = 0 \implies 0 - 2\mathbf{y} + 9 = 0$	$y = 4\frac{1}{2}$	$q(0,4\frac{1}{2})$	

B1 Error in transposition

B3 (0,-3) and (4.5, 0)

B2 $(-3,4\cdot5)$ or variations

B4 One point correct only

- S1 One point correct, the other the wrong way round
- A1 States y = 0 for p and/or x = 0 for q and stops
- A2 Attempts to get point(s) on the line

W1 Draws any line and stops

Or $(-3,0) \rightarrow (0,4\frac{1}{2}) \rightarrow (3,9)$ for full marks

- B1 Each step incorrect or omitted
- B2 Incorrect sign in change of x and/or y and continues
- B3 Incorrect direction of translation (gets image of q in p)
- B4 Change in x applied to y and vice versa
- S1 Incorrect numerical change each time (must be in the correct direction)
- A1 Determines one change & stops

A2 Correct graphical solution

- A3 Invents p and q and carries out symmetry correctly
- A4 Gives explanation of central symmetry and stops e.g. finds symmetry in the origin of any point
- A5 Gets the mid-point of [pq] & stops
- A6 Mid-point formula & stops

Note: This diagram merits 2 marks

However if arrows are shown it merits 5 marks

Part (c)		20 (5,5,5,5) marks	Att 2,2,2,2
L is	the line $3x$	-y - 11 = 0.	
(i)		Find the slope of <i>L</i> .	
(ii)	The lin	e K contains the points $a(-3, 0)$ and $b(6, r)$.	
	<i>K</i> is pe	rpendicular to L.	
		Find the value of <i>r</i> .	
(iii)		Find the coordinates of the image of the point <i>b</i>	b under the axial
		symmetry in the line <i>L</i> .	

(c) (i)	5 marks	Att 2
3x - y - 11 = 0	$m = -\frac{a}{b}$	(3,-2), (4,1) or other points
-y = -3x + 11	$=\frac{-3}{-1}$	$\frac{1+2}{4-3}$
m = 3	= 3	m = 3

B1 Error in manipulation

B2 Error in formula

- B3 Selects a point that is not on the line & continues
- A1 Correct formula and stops.
- A2 Finds correct point(s) on the line and stops.
- A3 Says x = 0 at the Y-axis and/or y = 0 at the X-axis and stops.

(c) (ii)	5 marks	Att 2
$m = \frac{r - 0}{6 - (-3)} = -\frac{1}{3} \implies \frac{r}{9} =$	$-\frac{1}{3} \implies r = -3$ or	
K: (-3,0), m = $-\frac{1}{3}$ \Rightarrow y - 0 = -	$\frac{1}{3}(x+3) \Longrightarrow x+3y+3=0: b \in K \Longrightarrow 6+$	$3r + 3 = 0 \Longrightarrow r = -3$ or
K: $x + 3y + k = 0$, $(-3,0) \in K$	$k \Rightarrow -3 + 3(0) + k = 0; \Rightarrow k = 3 \text{ giving } K :$	x + 3y + 3 = 0 & continues
* Allow candidate's w	ork from (c)(i)	

Allow candidate's work from (c)(i)

B1 Incorrect slope of K

B2 Incorrect formula

- B3 Switches x and y in substitution
- B4 Substitutes correctly for x and y but no slope
- S1 Incorrect sign after substituting and continues
- A1 States $m_1m_2 = -1$ and stops
- A2 Gets $m = -\frac{1}{3}$ and stops
- A3 Correct line formula and stops
- A4 Correct graphical solution

(c) (iii) (a)	5 marks	Att 2
	$L \cap K : 3x - y - 11 = 0$	$X \ 3 \Longrightarrow 9x - 3y = 33$	
	$\mathbf{x} + 3\mathbf{y} + 3 = 0$	$\Rightarrow x + 3y = -3 \Rightarrow 10x = 30 \Rightarrow x = 3 \text{ and}$	$1 \text{ y} = -2 \implies (3,-2)$

*Accept candidate's work from (c) (ii)

- B1 Error in manipulation of equations
- B2 Incorrect or no substitution for second value
- A1 Any correct step and stops
- A2 Correct graphical solution
- A3 Attempts to get a point on L or K

(c) (iii) (b)	5 marks	Att 2
$(6,-3) \rightarrow$	(3,-2) x down 3 and y up 1 \Rightarrow (3,-2) \rightarrow (0,-1) = S _L b	

B1 Incorrect direction of translation

B2 Incorrect sign in change of x and/or y and continues

- S1 Numerical slips
- A1 States correct translation & stops
- A2 Correct graphical solution
- A3 Invents point of intersection and carries out symmetry correctly

Part (a) Part (b) Part (c)	10 marks 20 marks 20 marks	Att 3 Att 6 Att 6
Part (a)	10 marks	Att 3
In the parallelogram <i>abcd</i> , $ \angle abc = 114^{\circ}$ and $ \angle dac = 47^{\circ}$. Find $ \angle bac $.	a d d d d d d d d d d d d d d d d d d d	c 114° b
(a)	10 marks	Att 3
$ \angle acb = 47^{\circ}(alt)$ s $\Rightarrow \angle bac = 180^{\circ} - (114^{\circ} + 47^{\circ})$ or 114 x 2 =228; 360 - 228 = 132 S	step 1 step 2 $\Rightarrow \angle bac = 180^\circ - 16$ tep 1: $132 \div 2 = 66$ step 2 $66 - 66$	$51^{\circ} = 19^{\circ}$ step 3 - 47 = 19 step 3
B1 Each step incorrect or omitted	B2 Treats triangles as isos	sceles
B3 Uses 360° for 180°		
 S1 Numerical slips A1 Indicates angles in triangle total 180° A2 Mentions alternate angles & stops A3 States some parallelogram property & 	° or angles in parallelogram total & stops e.g. opposite angles are ea	360° & stops qual
W1 Treats [ac] as bisector of \angle bad gettin W2 treats \angle bad = 90° getting \angle bac = 43	$ng_{\circ} \angle bac = 47^{\circ}$	
Part (b) 2	0 (10,10) marks	Att 3,3
In the parallelogram <i>pqrs</i> , the por and <i>w</i> are on the diagonal [<i>pr</i>] su $ \angle pqt = \angle wsr $. (i) $$ Prove that $ pt $ (ii) $$ Hence, or other	points t ach that = wr . rwise, show that the triangles psu	r r r r r r r r r r

()	(b) (i) 10 1	marks	Att 3
	Compare Δpqt and Δwsr		
	$ \angle pqt = \angle wsr $ (given) and $ \angle qpt = \angle wrs $	(alt) step 1	
	$ \mathbf{pq} = \mathbf{sr} $ step 2		
	$\Delta pqt \equiv \Delta wsr (or ASA) \Rightarrow pt = wr $	step 3	

- B1 Each step incorrect or omitted
- B2 Each incomplete step
- A1 Diagram with the given pair of equal angles indicated & stops
- A2 Identifies the two congruent triangles & stops

(b) (ii)	10 marks	Att 3
SSS	S	SAS
step 1 $ \mathbf{pw} = \mathbf{rt} $	step 1 $ \angle spw = \angle trq $	(alt)
as pw = pt + tw	$ \mathbf{ps} = \mathbf{qr} $	
and $ \mathbf{rt} = \mathbf{rw} + \mathbf{tw} $	step 2 $ pw = rt $ step 1 c	opposite
step 2 $ ps = qr $ (opp.sides)	step 3 $\Delta psw = \Delta qrt$ (SA	AS)
sw = qt (from (b)(i))		
step 3 $\Rightarrow \Delta psw \equiv \Delta qrt$ (SSS)	Can also be proved by	Y ASA

- B1 Each step incorrect or omitted
- B2 Each step incomplete
- A1 Identifies both triangles e.g. draws them separately
- A2 Diagram with pair of equal angles indicated

Prove that if two triangles are equiangular, the lengths of corresponding sides are in proportion.

_(c)	20 marks	Att 6
Given : Δabc and Δdef with		
$ \angle A = \angle D : \angle B = \angle E : \angle C = \angle$	ΈF	
R.T.P. $\frac{ ab }{ de } = \frac{ bc }{ ef } = \frac{ ac }{ df }$	step 1	
Const. Mark x on [ab] such that $ ax = de $		d A
Mark y on [ac] such that $ ay = df $	step 2	E F
Proof : Δaxy and Δdef are congruent		e Z
$ \angle axy = \angle E $	step 3	A
$\Rightarrow \left \angle axy \right = \left \angle abc \right \Rightarrow xy // bc$	step 4	
$\Rightarrow \frac{ \mathbf{ab} }{ \mathbf{ax} } = \frac{ \mathbf{ac} }{ \mathbf{ay} }$	step 5	b /
$\Rightarrow \frac{ ab }{ de } = \frac{ ac }{ df } \Rightarrow \frac{ ab }{ de } = \frac{ bc }{ ef } = \frac{ ac }{ df }$	step 6	

- B1 Each step incorrect or omitted
- A1 Draws two separate triangles and indicates equal angles
- A2 Indicates the second diagram of the proof & stops
- A3 Any knowledge of the theorem shown

Part (a) Part (b) Part (c)	10 marks 20 marks 20 marks	Att 3 Att 6 Att 7
A circle, centre c , 1 d is a point on $[ab] cd = 3$. Find the left	has a chord $[ab]$ of length 8. and <i>cd</i> is perpendicular to <i>ab</i> . ength of a diameter of the circle.	
(a)	10 marks	Att 3
$ ca ^{2} = 3^{2} + 4^{2} = 25$ $\Rightarrow ca = 5(\sqrt{25}) = r$ $\Rightarrow diameter = 10 (2\sqrt{25})$ Note : Award full mark Diagram with 3,4,5 sho	step 1 $ ad = 4$ step 2 $ ca \text{ or } r = 5$ $\overline{5}$) step 3 diameter = 10 as for bwn \Rightarrow diameter = 10	b d d a

- B1 Each step incorrect or omitted
- B2 Misuse of Pythagoras or uses 8 for 4
- S1 Numerical slips
- A1 States or implies Pythagoras & stops
- A2 States theorem about line through the centre bisecting the chord
- A3 Indicates |ac| = |bc| & stops

Part (b)	20 (10,10) marks	Att 3,3
(i) (ii)	Prove that a diagonal bisects the area of a parallelogram. Show how to construct the circumcircle of a triangle. All construction lines must be clearly shown.	

(b) (i)	10 marks	Att 3		
Given; Parm abcd with diagonal ac				
To prove : area $\triangle abc =$	area \triangle add step 1			
Proof : $ ac = ac $	<u>u</u>			
ab = dc	h			
ad = bc	step 2			
$\Rightarrow \Delta abc \equiv \Delta adc \equiv$	$\Rightarrow \text{ area } \Delta \text{abc} = \text{ area } \Delta \text{adc} \text{step 3} \qquad a {4}$	<u> </u>		
Note				
Candidate may use hal	f the base by the perpendicu lar height			
 Accept step 2 Memorised pressure of the state of the	clearly indicated on diagram roof with no diagram: award full marks if all stens are giv	en		
	oor with no unagrame award fun marks if an steps are giv	CH .		
B1 Each step incorrec	et or omitted			
B2 Proves theorem "o	opposite sides and angles in a parallelogram are equal"			
A1 Parallelogram wit	h a diagonal drawn & stops			
W1 Any theorem othe	er than in B2			
W2 A parallelogram	with nothing else			
(b) (ii)	10 marks	Att 3		
Construction: Draw a triangle abc. With compass and suitable radius length bisect any two sides of the triangle. Let the bisectors meet at the point k. k is the circumcentre of the triangle. With k as centre draw a circle passing through the points a,b and c. This circle is the circumcircle of the triangle abc.				
One side bisected	step 1: Second side bisected step 2: Circle drawn	step 3		
• Allow a tolera	ince of 2mm for the vertices			

- Allow a tolerance of 2mm for the vertices
- Arcs must be shown or other construction method
- B1 Each vertex not on circle (i.e. outsde tolerance)
- A1 Circumcircle and triangle drawn with no construction lines shown
- A2 Bisects one angle of the triangle & stops
- MR Incircle drawn with construction lines clearly shown
- W1 Triangle with incircle drawn but no construction shown

a, d, b, c are points on a circle, as shown. o is the centre of the circle. $ \angle acb = 50^{\circ}$ and $ ad = db $. Find (i) $ \angle aob $ (ii) $ \angle adb $ (iii) $ \angle adb $	Part (c)	20 (5,5,10) marks	Att 2,2,3
	a, d, b, c are point o is the centre of $ \angle acb = 50^{\circ}$ and Find(i) $ \angle aob $ (ii) \rightleftharpoons (iii) \rightleftharpoons	the circle, as shown. the circle. ad = db . $ \angle adb $ By joining <i>a</i> to <i>b</i> , or otherwise, find $ \angle oad .$	

(c) (i)	5 marks	Att 2
	$ \angle aob = 100^\circ \text{ or } 260^\circ$	

* Accept correct answer given on a diagram or answer given as 2(50)

- B1 25° or 335°
- A1 $|\angle aob| = 2 |\angle acb|$ & stops
- A2 c joined to o in diagram
- W1 Diagram reproduced without modification

* Work with candidate's answer in (c)(i)

- B1 50° or 90° or 80° with work shown
- S1 Numerical slips
- A1 $|\angle acb| + |\angle adb| = 180^{\circ}$ or similar & stops
- W1 Any other angle other than at B1
- W2 Diagram without modification

(c) (iii)	10 marks	Att 3
In isosceles $\triangle aob \angle aob = 100^{\circ}$	$\Rightarrow \left \angle \text{oab} \right = \frac{1}{2} (80^\circ) = 40^\circ \text{ step 1}$	
In isosceles $\triangle adb \angle adb = 130^\circ =$	$\Rightarrow \left \angle dab \right = \frac{1}{2} (50^\circ) = 25^\circ \text{ step } 2:$	$40^{\circ} + 25^{\circ} = 65^{\circ}$ step 3
Or		
$100^{\circ} + 130^{\circ} = 230^{\circ}$ step 1:	$360^{\circ} - 230^{\circ} = 130^{\circ}$ step 2 :	$\frac{130^{\circ}}{2} = 65^{\circ} \text{ step } 3$

- B1 Each step incorrect or omitted
- B2 Sum of angles in triangle $\neq 180^{\circ}$
- A1 |ao| = |bo| & stops
- A2 Two angles in an isosceles triangle are equal
- A3 Angles in a triangle total 180°

	-	
Part (a)	10 marks	Att 3
Part (b)	20 marks	Att 7
Part (c)	20 marks	<u>Att 6</u>
Part (a)	10 marks	Att 3
G	If $\tan A = -1$, find the two values for the angle A, where $0^\circ \le A$	$4 \leq 360^{\circ}$.
a)	10 marks	Att 3
Angle	of reference is 45° : step 1	
$\Rightarrow A =$	$A = 130^{\circ} - 45^{\circ}$ or $360^{\circ} - 45^{\circ}$ step 2 \Rightarrow A = 135° and 315° step 2	step 3
31 Incorr 32 Incor 33 Uses	ect AC1S rect use of 180° or 360° 90° and/or 270°	
1 Nume	erical slips S2 Correct angle outside r	ange
44 Incor 45 TanA	rect mode on calculator $A = \frac{O}{A}$	
Part (b)	20 (5,5,10) marks	Att 2,2,3
(i)	<i>abc</i> is a triangle where $ bc = 6$.	
	d is a point on $[ab]$ and	c A
	cd is perpendicular to ab ,	
	where $ cd = 4$ and $ ad = 9$	
	$\mathbf{F} = \mathbf{F} + \mathbf{I} + $	d c
	Find $ \angle cbd $, correct to the nearest degree,	
	and find $ \angle cad $, correct to the nearest degree.	
(ii)	X is an acute angle such that $\sin X = \frac{1}{2}$.	
	\bigcirc Find the value of $\cos X$ in surd form.	

To be applied to parts (b) and (c)

- B1 Each step incorrect or omitted
- B3 Incorrect ratio in Sine Rule
- B5 Error in transposition
- B7 Decimal error

- B2 Incorrect ratio (Sin, Cos or Tan)
- B4 Error in cross-multiplication
- B6 Takes $1^\circ = 100$ '
- B8 Failure to calculate
- B9 Reads wrong page of the tables or calculator in the wrong mode
- B10 Early rounding off which affects the accuracy of the answer

Mr 1 Fails to distinguish between degrees and minutes and decimal degrees

- S1 Numerical slips
- S2 Fails to round off or rounds off incorrectly each time
- S3 Slip reading tables e.g. wrong column
- A1 Partly filled in Sine Rule and stops
- A2 Writes down Sin, Cos or Tan ratio & stops
- A3 Finds |ac| or |db| and stops in (b) (i)
- A4 Triangle cdb and/or acd drawn with sides identified attempt 2 for each

- B11 Each step incorrect or missing
- B12 Error in Theorem of Pythagoras
- B13 Answer not in surd form

A5 Correct formula for Theorem of Pythagoras & stops

A6 Diagram with 1 and 2 but no X & stops

(c) (i)		10 marks	Att 3
$\frac{\operatorname{Sin} \angle \operatorname{prq}}{10} = \frac{\operatorname{Sin} \angle 42^{\circ}}{12}$	step1 \Rightarrow	$\operatorname{Sin} \angle \operatorname{prq} = \frac{10.\operatorname{Sin} \angle 42^{\circ}}{12} = .5576$	Step 2
\Rightarrow	$\angle prq = 33 \cdot 89 =$	$= 33 \cdot 9$ step 3	

B1 Each step incorrect or missing W1 Treats triangle pqr as a right-angled triangle

(<u>c) (ii)</u>	10 marks	Att 3
	$ \angle rpq = 180^{\circ} - (42^{\circ} + 33 \cdot 9^{\circ}) = 104 \cdot 1^{\circ} \text{ step } 1$	
	Area $\Delta pqr = \frac{1}{2} \cdot 10.12 \cdot 10.12$, $\sin 104 \cdot 1^{\circ}$ step 2 = $58 \cdot 19 = 58 \cdot 2$ step 3	

*Note: Candidate may get |rq| by the sine Rule and get the area using a different angle (17.39)

B14 Uses only one side $\frac{1}{2}$ |rp|Sin104 · 1°

B15 Incorrect formula e.g. Cos for Sin or omits the half

B16 Halves the $104 \cdot 1^{\circ}$ in the Sin $\angle 104 \cdot 1^{\circ}$ and continues

Note: $\frac{1}{2}$.10.12.Sin42° is double blunder for 4m and further slip –1 if no round off, giving 3m

And the same for
$$\frac{1}{2}$$
10.12..Sin 33.9°

A7 Gets |rq| = 17.39 and stops A8 Some substitution in the area formula $\frac{1}{2}$ absinC

Part (a) Part (b) Part (c)	10 (5,5)marksA20 marksA20 marksA20 marksA		Att 4 Att 8 Att 8				
Part (a)		1	Att 2,2				
	The tab	ble shows the results of a	school	survey in	to students' f	favourite t	types of music.
		Music Type	Рор	Rock	Classical	Other	
		Number of students	45	25	5	15	
	đ	Draw a pie-chart to ille calculate the size of ea	ustrate th	he above e.	information,	showing	clearly how you

- B1 360° not used in calculation
- B2 Inverted (incorrect) fraction
- B3 Inaccurate drawing allowing for tolerance of 5°
- S1 Numerical slips (if not B2)
- S2 Each missing or incorrect angle to a max of 3
- S3 Each missing or incorrect sector to a max of 3
- A1 Gets 90 & stops
- A2 Indication of 360°
- A3 Any circle
- A4 Some other diagram e.g. Bar-chart (once only)

The cumulative frequency table shows the amount of time spent studying in a certain week by 100 Leaving Certificate students.

Time in hours	≤ 2	≤4	≤6	≤ 8	≤10		
Number of stud	10	28	60	85	100		
(i) 🖄 On	graph par	ber constru	uct the ogi	ve.		L	
Use your graph to estimate:							
(ii) 🖾 the	the median						
(iii) 🚔 the	the inter-quartile range						
(iv) the	the number of students who spent 9 hours or more studying.						

• No penalty for not joining (0,0) to (2,10)

Ogive B2 Draws a cumulative Histogram

- B1 Incorrect scales once only
- B3 Plots points but does not join them or joins by line segments
- B4 Draws a cumulative cumulative graph
- S1 Each incorrect plot or point omitted
- A1 Draws axes & stops

Median

Accept correct answer without horizontal or vertical lines Accept median with candidate's ogive within tolerance ± 0.2 for his correct answer

B1 Mean for median (21.82)
B2 Draws horizontal from wrong point e.g. 5
B3 Draws horizontal line only (no penalty if the correct answer is given)
B4 Draws perpendicular from Time 5 hours to get the median = 41

S1 Lines drawn correctly and median not given or outside tolerance for the graph

A1 Indicates use of mid-value (50 or 5) A2 Some knowledge of median e.g. $\frac{100}{5}$

Inter-quartile range

Accept the answer consistent with the candidate's graph with tolerance ± 0.2

- B1 Uses wrong axes x = 2.5, 7.5 B2 No subtraction
- B3 Correct lines drawn on the graph but no values given
- S1 3.6 7 = -3.4

S2 Work correct but outside tolerance

A1 Finds 25 or 75 & stops

Number of students with 9 hours or more study

Accept **answer** consistent with the candidate's graph with a tolerance ± 2

- B1 Line drawn from wrong starting point of correct axes
- B2 No subtraction B3 Uses 9 on the vertical axis
- B4 Draws a vertical line from 9 & stops
- S1 Work correct but outside tolerance
- S2 100 + 93 or 93 100
- W1 Line drawn from incorrect starting point on correct axis & stops

Note Diagram as shown in the solution merits 5,4,2,2 = 13 marks

Third year students were asked how much pocket money they spent in a certain week. The results are shown in the frequency distribution table below.

Amount of pocket money in €	0-5	5-10	10 - 15	15 - 20	20-25
Number of students	4	22	14	x	6

[Note: 5 - 10 means $\notin 5$ or more but less than $\notin 10$, etc.]

Taking mid-interval values it was found that the mean amount of pocket money spent in that week was €11.10.

 \bigcirc Find the value of *x*.

(c) Step 1	5 marks				Att		
	2.5	7.5	12.5	17.5	22.5		

- B1 Mid-interval values not used e.g. 0,5,10,15,20 or 5,10,15,20,25
- S1 Each arithmetic slip to max of 3
- S2 Each incorrect mid-interval value to max of 3

(c) Step 2	5 marks	Att 2
	$\frac{(2 \cdot 5 \times 4) + (7 \cdot 5 \times 22) + (12 \cdot 5 \times 14) + (17 \cdot 5 \times x) + (22 \cdot 5 \times 6)}{46 + x}$	= 11.10
or	$\frac{485 + 17 \cdot 5 x}{46 + x} = 11 \cdot 1$	

• Accept either of Left Hand sides for 5m

B1 Adds instead of multiplying in numerator

B2 Multiplies instead of adding in denominator

- B3 Uses 5 or 5x in denominator
- B4 Uses 46x in denominator

(c) Step 3			5 marks	Att 2
	485 + 17·5 x	=	11.1(46 + x)	
		Or		
	485 + 17.5 x	=	510.6 + 11.1 x	

W1 10.54 + 17.5 x = 11.1

W2 No cross multiplication

(c) Step 4	5 Marks	Att 2
	$17 \cdot 5 \times -11 \cdot 1 \times = 510 \cdot 6 - 485$	
	$\Rightarrow 6 \cdot 4x = 25 \cdot 6$	
	$\Rightarrow x = \frac{25 \cdot 6}{6 \cdot 4} = 4$	

B1 Each error in cross-multiplication or transposition

B2 Decimal blunder (aplied to lines 1 & 2 of the proof)

S1 x = $\frac{25 \cdot 6}{6 \cdot 4}$ accept for 4m & if continues to get 4 award 5m.