Coimisiún na Scrúduithe Stáit STATE EXAMINATIONS COMMISSION

JUNIOR CERTIFICATE EXAMINATION 2003

MATHEMATICS HIGHER LEVEL PAPER 2

MARKING SCHEME

GENERAL GUIDELINES FOR EXAMINERS

1. Penalties of three types are applied to candidates' work as follows:

- Blunders - mathematical errors/omissions (-3)
- Slips - numerical errors (-1)
- Misreadings (provided task is not oversimplified) (-1).

Frequently occurring errors to which these penalties must be applied are listed in the scheme. They are labelled as B1, B2, B3,......, S1, S2, S3,...., M1, M2, etc. Note that these lists are not exhaustive.
2. When awarding attempt marks, e.g. Att(3), it is essential to note that

- any correct relevant step in a part of a question merits at least the attempt mark for that part
- if deductions result in a mark which is lower than the attempt mark, then the attempt mark must be awarded
- a mark between zero and the attempt mark is never awarded.

3. Worthless work is awarded zero marks. Some examples of such work are listed in the scheme and they are labelled as W1, W2,....etc.
4. The same error in the same section of a question is penalised once only.
5. Special notes relating to the marking of a particular part of a question are indicated by an asterisk. These notes immediately follow the box containing the relevant solution.
6. Particular cases, verifications and answers derived from diagrams (unless requested) qualify for attempt marks only.

7 The phrase "and stops" means that no more work is shown by the candidate.
8 The correct answer without work, where the hand symbol is shown, is blunder (-3) An incorrect answer, without work, is worthless (0)

Part (a)	10 marks	Att 3
Part (b)	20 marks	Att $3,2,2$
Part (c)	20 marks	Att 3,3
Part (a)	10 marks	Att 3

A solid cone has vertical height 4 cm . The radius of its base is 3 cm . Find, in terms of π, the volume of the cone.

(a)
 10 marks
 Att 3

$V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi(3)^{2} 4=12 \pi$
Blunders (-3)
B1 Error in volume of cone formula
B2 Incorrect substitution into formula
B3 Incorrect squaring
B4 Unfinished
Slips (-1)
S1 Answer not in terms of $\pi \quad$ S2 Arithmetic slips

Attempts (3 marks)

A1 Correct formula with some substitution \& stops
Worthless (0)
W1 Incorrect formula $\frac{4}{3} \pi r^{3} \quad 2 \pi r h$

A solid rectangular metal block has length 12 cm and width 5 cm .
The volume of the block is $90 \mathrm{~cm}^{3}$.
(i) Find the height of the block in cm .
(ii) Find the total surface area of the block in cm^{2}.
(iii) Each cm^{3} of the metal has mass 8.4 g .

The total mass of a number of these metal blocks is 113.4 kg . How many blocks are there?
(b)(i)

$$
\mathrm{V}=(12)(5) h=90 \text { step } 1 \Rightarrow h=\frac{90}{(12)(5)} \quad \text { step } 2 \quad=1.5 \quad \text { step } 3
$$

Blunders (-3)
B1 Incorrect relevant volume formula B2 Mathematical Blunder ($90-60=30$)
B3 Misplaced decimal point B4 Uses surface area \& finishes
B5 Incorrect substitution e.g. 12.12.h $=90 \&$ continues
Slips (-1)
S1 Arithmetic slips
Attempts (3 marks)
A1 Correct formula, no substitution e.g. l.b.h A2 12.5 .90
(b)(ii)

Att 2

$$
\begin{aligned}
& \text { Surface area }=2(12 \times 5+12 \times 1 \cdot 5+5 \times 1 \cdot 5) \\
& =2(60+18+7 \cdot 5)=2(85 \cdot 5)=171 \mathrm{~cm}^{2} .
\end{aligned}
$$

* Allow candidate's h from (b)(i)

Blunders (-3)
$\begin{array}{llll}\text { B1 } & \text { Forgets to double surfaces } & \text { B2 } & \text { Omits one surface } \\ \text { B3 } & \text { Uses volume } & \text { B4 } & \text { Each incorrect substitution }\end{array}$
Slips (-1)
S1 Arithmetic slips
Attempts (2 marks)
A1 Any attempt to get a surface area
Worthless (0)
W1 Incorrect answer no work W2 Uses formula for cone, cylinder or sphere
(b)(iii)

5 marks

Att 2

$$
\begin{aligned}
& \text { mass of one block }=90 \times 8.4 \mathrm{~g} \\
& \text { number of blocks }=\frac{1000 \times 113.4}{90 \times 8.4}=150 \text { blocks }
\end{aligned}
$$

Blunders (-3)

B1 Forgets to multiply 8.4 by 90 \& continues correctly
B2 Inverts the division
B3 Does not change Kgs to grams
Slips (-1)
S1 Arithmetic slips
MR 84 for 8.4 or similar \& continues
Attempts (2 marks)
A1 $90 \times 8.4 \&$ stops
A2 Correct answer, no work
A3 $1000 \times 113.4 \&$ stops

A capsule is made up of a cylindrical section and two hemispherical ends.
The length of the cylindrical section is 170 cm and the diameter is 84 cm .
(i) Find the surface area of the capsule in cm^{2}.

Give your answer correct to two significant figures.
(ii) Find the volume of the capsule in m^{3}.

Give your answer correct to two decimal places.
(c)(i)

$$
10 \text { marks }
$$

Att 3

$$
\begin{aligned}
\text { Surface area } & =4 \pi r^{2}+2 \pi r h & & \text { step 1 } \\
& =4 \pi(42)^{2}+2 \pi(42)(170) & & \text { step 2 } \\
& =7056 \pi+14280 \pi & & \\
& =21336 \pi=66995=67000 \mathrm{~cm}^{2} & & \text { step 3 }
\end{aligned}
$$

* Initial answer will change depending on the value of π

Blunders (-3)

B1 Sees the diagram as two-dimensional
B2 Each step incorrect or omitted
B3 $r=84 \&$ continues
B4 Mathematical blunders
B5 Each incorrect relevant formula
Slips (-1)
S1 Arithmetic slips
S2 Failure to round off or rounds off incorrectly
Attempts (3 marks)
A1 $4 \pi \mathrm{r}^{2}$ or $2 \pi \mathrm{rh}$ with some substitution
A2 $\mathrm{r}=42$
A3 Two wrong relevant formulae added e.g. $3 \pi r^{2}+\frac{4}{3} \pi r^{3}$

$$
\begin{array}{rlr}
\text { Volume } & =\frac{4}{3} \pi r^{3}+\pi r^{2} h & \text { step1 } \\
& =\frac{4}{3} \pi(0 \cdot 42)^{3}+\pi(0 \cdot 42)^{2} 1 \cdot 7 & \text { step2 } \\
& =0 \cdot 098784 \pi+0 \cdot 29988 \pi & \\
& =0 \cdot 398664 \pi=1 \cdot 2518=1 \cdot 25 \mathrm{~m}^{3} & \text { step } 3
\end{array}
$$

* Accept candidate's radius from part (c)(i)

Blunders (-3)
B1 Answer in cm^{3}
B2 $\mathrm{r}=84$ (unless in (c)(i))
B3 Each incorrect relevant formula e.g. π rh
B4 Misplaced decimal point (once only)
B5 Mathematical blunders
B6 Each step incorrect or omitted
Slips (-1)
S1 Arithmetic slips
S2 Failure to round off

Attempts (3 marks)
A1 $\frac{4}{3} \pi r^{3}$ or $\pi r^{2} h$ with some substitution
A2 $\mathrm{r}=42$ or .42 \& stops

QUESTION 2

Part (a)

10 marks
20 marks
Att 2,2
Part (b)
20 marks
Att 3,2,2
Part (c)
Att 2,2,2,2

Part (a)
$10(5,5)$ marks
Att 2,2

Calculate the value of x
and the value of y in the diagram.

(a)
$10(5,5)$ marks
Att 2,2

$$
\begin{aligned}
& x^{\circ}+130^{\circ}=180^{\circ} \Rightarrow x^{\circ}=50^{\circ} \\
& 2 y^{\circ}=130^{\circ} \Rightarrow y^{\circ}=65^{\circ}
\end{aligned}
$$

* Accept correct answer without work in each case

Blunders (-3)
B1 $\mathrm{x}^{\circ}+130^{\circ}=180^{\circ}$ \& stops (for x$) \quad \mathrm{B} 2 \mathrm{x}^{\circ}+\mathrm{x}^{\circ}+\mathrm{y}^{\circ}=180^{\circ}$ giving $\mathrm{y}=80^{\circ}$
Slips (-1)
S1 Numerical slips

Attempts (2,2 marks)
A1 shows 180° \& stops
A2 States exterior angle theorem \& stops
A3 States angles at base of isosceles triangle are equal \& stops
Worthless (0)
W1 $\mathrm{x}=\mathrm{y} \&$ stops
$a(2,3)$ and $b(5,-1)$ are two points.
The translation $\overrightarrow{a b}$ maps the point $p(6,7)$ to the point q.
(i) Find the co-ordinates of q.
(ii) Verify that $|a b|=|p q|$.
$(2,3) \rightarrow(5,-1)$: $\quad x$ up $3, \quad y$ down 4 $(6,7) \rightarrow(9,3)$.

* $(9,3)$ with no work, $\mathrm{Bl}(-3)$ BUT $(2,3) \rightarrow(5,-1)$ and $(6,7) \rightarrow(9,3)$ gets full marks.
- Accept $\overrightarrow{\text { ap }}$ i.e. $(2,3) \rightarrow(6,7)[$ up 4, up 4] and $(5,-1) \rightarrow(9,3)$

Blunders (-3)

B1 Incorrect sign in Change of x and/or y (once only)
B2 Determines changes between x and y in each point and applies correctly
B3 Change in x applied to y or vice versa

Misreading (-1)

M1 Applies changes to point b instead of point p
Slips (-1)
S1 Incorrect numerical change each time in the correct direction
Attempts (3 marks)
A1 One correct change \& stops
A2 Axes showing at least two points
A3 Explanation of a translation \& stops
W1 Slopes calculated (apply also to (b)(ii))
(b)(ii)
$10(5,5)$ marks
Att 2,2
$|a b|=\sqrt{(5-2)^{2}+(-1-3)^{2}}=\sqrt{9+16}=5 \quad 5$ marks
$|p q|=\sqrt{(9-6)^{2}+(3-7)^{2}}=\sqrt{9+16}=5 \quad 5$ marks

* Allow incorrect point q from part (b)(i)

Blunders (-3)

B1 Incorrect sign(s) in Distance Formula (once only) and continues
B2 Incorrect relevant formula and continues correctly: no square root or no squaring, each time
B3 Incorrect substitution i.e. x and y confused
B4 Mathematical blunders
Slips (-1)
S1 Mixes up x_{1} and x_{2}
Attempts (2 marks)
A1 Correct Distance formula \& stops
A2 Any attempt at subtraction of x and/or y coordinates
A3 Axes showing a and b is att 2 BUT showing a, b and p and/or q merits att 2 twice
L is the line $x-2 y-3=0$.
(i) Find the slope of L.
(ii) Find the equation of the line K through $(-2,5)$ which is perpendicular to L.
(iii) Find the co-ordinates of the point of intersection of L and K.
(iv) Hence, or otherwise, find the co-ordinates of the image of $(-2,5)$ under the axial symmetry in L.

(c)(i)	$\mathbf{5}$ marks	Att $\mathbf{2}$
$x-2 y-3=0 \Rightarrow 2 y=x-3 \Rightarrow y=0.5 x-1.5$		
Slope is 0.5	Allow any other valid method	

Blunders (-3)

B1 Error in manipulation
B2 Error in formula

Attempts (2 mark)

A1 Correct formula \& stops
A2 Finds correct point(s) on the line \& stops
A3 Mentions $\mathrm{x}=0$ at y -axis and/or $\mathrm{y}=0$ at x -axis \& stops
(c)(ii)

5 marks

Att 2
Slope of K is -2
$y-5=-2(x+2) \Rightarrow 2 x+y-1=0$. (not necessary)

* Allow incorrect answer from (c)(i)
* Note $y-5=-2(x+2)$ gets full marks

Blunders (-3)
B1 Incorrect signs in equation of line formula \& continues
B2 $\mathrm{M}_{1} \times \mathrm{M}_{2}=1 \&$ continues
B3 Incorrect sign for the slope
B4 Switches x and y when substituting
B5 Substitutes correctly for x and y but no slope
S1 One incorrect sign in formula \& continues
Attempts (2 mark)
A1 Correct equation formula \& stops
A2 $\mathrm{M}_{1} \times \mathrm{M}_{2}=-1$ \& stops
A3 Gets the correct slope \& stops
A4 $2 \mathrm{x}+\mathrm{y}+\mathrm{k}=0$ \& stops
(c)(iii)

$$
\begin{aligned}
& x-2 y=3 \quad \Rightarrow \quad x-2 y=3 \\
& 2 x+y=1 \quad \Rightarrow \frac{4 x+2 y=2}{5 x}=5 \quad \Rightarrow \quad x=1
\end{aligned}
$$

$$
x-2 y=3 \quad \Rightarrow \quad 1-2 y=3 \Rightarrow y=-1 . \quad \text { Point of intersection }(1,-1)
$$

* Allow candidate's K from part (c)(ii)

Blunders (-3)
B1 Error in manipulation of the equations
B2 Error in signs
B3 Incorrect or no substitution for second value
Attempts (2 marks)
A1 Any correct step \& stops
A2 Correct graphical solution
(c)(iv)
$(-2,5)(\in \mathrm{K}) \rightarrow(1,-1) \rightarrow(1+3,-1-6)=(4,-7)$.

* Allow candidate's point of intersection from (c)(iii)

Blunders (-3)

B1 Incorrect sign in change of x and/or y and continues
B2 Incorrection direction of translation

Slips (-1)
S1 Incorrect numerical change each time

Attempts (2 marks)
A1 Determines one change \& stops
A2 Axes showing the correct two points

QUESTION 3

Part (a)
Part (b)
Part (c)

10 marks
20 marks
20 marks

Att 2,2
Att 3,3
Att 2,2,2,2

Part (a)
$10(5,5)$ marks
Att 2,2

The line T passes through r
and is parallel to $p q$.
Calculate the value of x and
the value of y in the diagram.

(a)
$10(5,5)$ marks
Att 2,2
$x^{\circ}=54^{\circ}$
$54^{\circ}+y^{\circ}+38^{\circ}=180^{\circ} \Rightarrow y^{\circ}=180^{\circ}-92^{\circ}=88^{\circ}$

S1 Numerical slips
A1 States alternate angles are equal \& stops (for x)
A2 States the angle between rq and T is 38° \& stops (for y)
A3 States that $\mathrm{x}^{\circ}+\mathrm{y}^{\circ}+38^{\circ}=180^{\circ}$ \& stops (for y
A4 Extends rp (or rq)and gets the exterior angle \& stops
Part (b)(i)
10 marks
Att 3

Construct a triangle $x y z$ in which $|x y|=10 \mathrm{~cm},|y z|=7 \mathrm{~cm}$ and $|x z|=5 \mathrm{~cm}$.

Part (b)(i)
10 marks
Att 3
Construction draw [xy] 10 cm in length
step 1
with x as centre draw an arc 5 cm in length \& with y as centre draw an arc 7 cm in length step 2 arcs intersect at z . join zx and zy step 3

* Allow tolerance of $\pm .2$

B1 Each step omitted or incorrect
B2 No construction lines visible
B3 Outside of tolerance (once only)
A1 Rough diagram with lengths marked
W1 Triangle with no measurements

Prove that an exterior angle of a triangle equals the sum of the two interior opposite angles in measure.
(b)(ii)

10 marks
Att 3

Given triangle with angles A, B, C, D, as shown
To Prove: $|\angle D|=|\angle A|+|\angle B|$ step 1
Proof: $\quad|\angle A|+|\angle B|+|\angle C|=180^{\circ}$ $|\angle C|+|\angle D|=180^{\circ} \quad$ step 2
Hence, $\quad|\angle C|+|\angle D|=|\angle A|+|\angle B|+|\angle C|$

Thus,
$|\angle D|=|\angle A|+|\angle B|$
step 3

* Memorised proof, no diagram, full marks if all steps are given

Blunders (-3)
B1 Each step omitted or incorrect
B2 Each incomplete step
Attempts (3 marks)
A1 Labelled diagram \& stops
A2 Proves 3 angles total 180° correctly
Worthless (0)
W1 Draws a triangle \& stops

The diagram shows a regular hexagon.
(A regular hexagon has six equal sides and
six equal angles.)
(i) How many axes of symmetry has the hexagon?
(ii) Copy the diagram into your answerbook and draw in the axes of symmetry.
(iii) $[a d]$ and $[c f]$ intersect at o.

What is the measure of the angle of the rotation,
 about o, which maps a onto c ?
(iv) Describe one transformation which maps [af] to [cd].
(c)

Att 2,2,2,2
(i) 6 axes
(ii) \rightarrow
(iii) 120° or 240°
(iv) axial symmetry in be translation a to c or fto d or central symmetry in o or $\mathrm{R}_{180^{\circ}}$

(i) $\mathrm{S} 1 \quad 12$

A1 Any number between 1 and 5 inclusive
W1 any other number
(ii) S1 Each axis missing, to max of 3

A1 One axis drawn \& stops
W1 Copies diagram \& stops
(iii) B1 $\frac{360}{12}$ or $\frac{360}{12}=30^{\circ}$ \& stops

A1 Any indication of 30° or 60° or 90°
Note: Accept correct answer without work.
(iv) B1 Central symmetry in eb

B2 Axial symmetry in o
A1 Mentions eb e.g. $\overrightarrow{e b}$
W1 Central symmetry or axial symmetry or translation or rotation \& stops

QUESTION 4

Part (a)

Part (b)
20 marks
Att 6
Part (c)

In the parallelogram $a b c d$,
$|\angle a b c|=53^{\circ}$ and $|b c|=12 \mathrm{~cm}$.
(i) Find $|\angle b c d|$.
(ii) Find the perpendicular height, h,
 given that the area of $a b c d$ is $90 \mathrm{~cm}^{2}$.
(a)(i)

5 marks
Att 2
$|\angle b c d|=180^{\circ}-53^{\circ}=127^{\circ}$

Blunders (-3)

B1 Assumes angles in Parm total 180° and gets answer 37°
B2 Gets $|\angle d c e| \&$ stops
B3 Gets $|\angle b c d|=254^{\circ}\left(360^{\circ}-2\left(53^{\circ}\right)\right)$
Slips (-1)
S1 Numerical slips
Attempts (2 marks)
A1 States that the sum of the angles in a Parm is 360°
A2 Gets $|\angle c d a|=53^{\circ}$ \& stops
A3 $|\angle b c e|=90^{\circ}$
(a)(ii)
5 marks
Att 2

$$
(12)(h)=90 \quad \Rightarrow h=7 \frac{1}{2}
$$

Blunders (-3)
B1 Gets the area of triangle cda or cba \& stops
B2 Error in transposing
B3 Uses $\frac{1}{2}$ (12). $\mathrm{h}=90$
Attempts (2 marks)
A1 $12 \times \mathrm{h}=90 \&$ stops
A2 Finds $|\mathrm{cd}| \&$ stops (9.39) or $|\mathrm{ab}| \&$ stops

Prove that if two sides of a triangle are equal in measure, then the angles opposite these sides are equal in measure.
(b)

20 marks
Att 6
$a b c$ is a triangle with $|a b|=|a c|$
To Prove: $|\angle a b c|=|\angle a c b|$
Construction: Join a to d, the midpoint of [bc]
Proof: $\quad|a b|=|a c|$ (given)
$|a d|=|a d|$
$|b d|=|d c| \quad$ (construction)
Thus triangles $a b d$ and $a d c$ are congruent
Thus | $\angle a b c|=|\angle a c b|$

Step1

step 2
step 3
step 4
step 5
step 6

* For construction candidate may use ad \perp bc but 6 steps still apply
* Step 3 may be implied in the construction in both proofs
* Steps 2,3 and 4 may be indicated on diagram
* Memorised proof, no diagram, full marks if all steps are given
* In step 2 omits "mid-point of [bc)" or similar is a blunder

Blunders (-3)

B1 Each step incorrect or omitted

Attempt (6 marks)

A1 ad shown in a diagram (even without letters)

Worthless (0)

W1 A triangle and nothing else
W2 Wrong theorem
a, d, b, c are points on a circle, as shown.
$[a b]$ is a diameter of the circle.
$|a b|=12 \mathrm{~cm}$ and $|a c|=|c b|$.
(i) Write down $|\angle b c a|$, giving a reason for your answer.
(ii) Find $|\angle c d b|$.
(iii) Find $|b c|$.

(iv) Find the area of $\Delta a b c$.
(i) $|\angle b c a|=90^{\circ}$, angle in semicircle
(ii) $\quad|a c|=|b c| \Rightarrow|\angle b a c|=45^{\circ}$
$|\angle c d b|=|\angle b a c| \Rightarrow|\angle c d b|=45^{\circ}$
(iii) $|a c|^{2}+|b c|^{2}=12^{2} \Rightarrow 2|b c|^{2}=144 \Rightarrow|b c|^{2}=72 \Rightarrow|b c|=\sqrt{72}$ (accept) $=6 \sqrt{2}$
(iv) \quad Area $=\frac{1}{2}|b c| \times|a c|=\frac{1}{2} \times 6 \sqrt{2} \times 6 \sqrt{2}=36$
(i) B1 Reason not given or incorrect or measured using a protractor
(ii) W1 Reproduction of original diagram \& stops and also for (iii) and (iv)
(iii) May use the Sine rule $\frac{|b c|}{\sin 45^{\circ}}=\frac{12}{\sin 90^{\circ}}$ or $\operatorname{Sin} 45^{\circ}=\frac{|\mathrm{bc}|}{12}=\frac{1}{\sqrt{2}}$ etc.
(iv) May use trig area formula $\frac{1}{2}|c a \| c b| \sin 90^{\circ}$ etc.

QUESTION 5

Part (a) Part (b) Part (c)	10 marks	Att 2,2
	20 marks	Att 3,3
	20 marks	Att 3,3
Part (a)	$10(5,5)$ marks	Att 2,2
Us	iagram to	7

(a)
$10(5,5)$ marks
Att 2,2
$7^{2}+2^{2}=49+4=53 \quad 5$ marks
$\sin A=\frac{7}{\sqrt{53}} \quad \cos A=\frac{2}{\sqrt{53}} 5$ marks

* Note that this part is divided in to two parts as per scheme

Blunders (-3)

B1 Incorrect use of Pythagoras' Theorem
B2 Incorrect squaring
B3 Incorrect trigonometric ratios
B4 Omits either sine or cosine
B5 Uses 53 for $\sqrt{53}$
Slips (-1)
S1 Numerical slips
S2 Answer not in surd form (0.9615 and 0.2747) - once only
Attempts (2,2 marks)
A1 Any reference to Pythagoras
A2 States correct trigonometric ratio for sine or cosine

In the triangle $p q r$,
$|p q|=4 \cdot 2 \mathrm{~cm},|\angle r p q|=70 \cdot 06^{\circ}$
and $|\angle q r p|=44.43^{\circ}$.
(i) Find | $q r \mid$, giving your answer correct to two decimal places.
(ii) Hence, or otherwise, find the area of $\Delta p q r$.
Give your answer correct to
 two decimal places.

Part (b)(i)
10 marks
Att 3

$$
\begin{array}{ll}
\frac{|q r|}{\sin 70 \cdot 06^{\circ}}=\frac{4 \cdot 2}{\sin 44 \cdot 43} & \text { step } 1 \\
\frac{|q r|}{.9401}=\frac{4.2}{.7001} & \text { step 2 } \\
|q r|=\frac{4.2 \times .9401}{.7001}=5.64 & \text { step 3 }
\end{array}
$$

To be applied to parts (b) and (c)

Blunders (-3)
B1 Each step incorrect or omitted
B2 Incorrect trigonometric ratio
B3 Incorrect ratio in Sine rule
B4 Error in transposition
B5 Takes $1^{\circ}=100$ '
B6 Decimal error
B7 Reading wrong page of tables or calculator in the wrong mode
B8 Failure to calculate
B9 Early rounding off which affects the accuracy of the answer
Slips (-1)
S1 Numerical slips
S2 Slips reading tables e.g. wrong column
S3 Fails to round off
MR1 Fails to distinguish between degrees \& minutes and decimal degrees e.g. $70.06^{\circ} \& 70^{\circ} 6^{\prime}$
i.e. apply once only throughout

Attempts (3 marks)
A1 Partly filled in Sine Rule \& stops

Worthless

W1 Treats triangle pqr as a right-angled triangle
(b)(ii)

$$
\begin{array}{cc}
|\angle p q r| & =180^{\circ}-\left(70 \cdot 06^{\circ}+44 \cdot 43^{\circ}\right)=65 \cdot 51^{\circ} \\
\text { step 1 } \\
0 \cdot 5 \times 4 \cdot 2 \times 5 \cdot 64 \times \sin 65 \cdot 51^{\circ} & \text { step 2 } \\
\text { Area }=10 \cdot 778=10 \cdot 78 & \text { step 3 }
\end{array}
$$

* Allow the candidate's $|\mathrm{qr}|$ from (b)(i)

B10 Uses only one side, $\frac{1}{2}|\mathrm{pq}| \sin 65.51^{\circ}$
B11 Halves the 65.51 in the $\sin 65.51^{\circ}$ \& continues
B12 Incorrect formula
A2 Area formula from the tables with some substitution \& stops

Part (c)
$20(10,10)$ marks
Att 3,3

A vertical mast $[x y]$ stands on level ground.
A straight wire joins y, the top of the mast, to t, a point on the ground. t is 50 m from x, the bottom of the mast.
(i) If $|\angle y t x|=56 \cdot 31^{\circ}$, find $|x y|$, the height of the mast.
(ii) A second straight wire joins y to k, another point on the ground.

If the length of this wire is 100 m , find $|\angle y k t|$, correct to the nearest degree.

(c)(i)

10 marks

Att 3
$1 \tan 56 \cdot 31^{\circ}=\frac{|x y|}{50}$ step $1 \Rightarrow|x y|=50(1 \cdot 5000)$ step $2=75$ step 3
$2 \tan 33.69^{\circ}=\frac{50}{|x y|}$ step $1 \Rightarrow .6666=\frac{50}{|x y|}$ step $2 \Rightarrow|x y|=\frac{50}{.6666}=75$ step 3
$3 \quad \frac{50}{\operatorname{Sin} 33.69^{\circ}}=\frac{|\mathrm{xy}|}{\operatorname{Sin} 56.31^{\circ}} \operatorname{step} 1 \Rightarrow \frac{50}{.5547}=\frac{|\mathrm{xy}|}{.8321}$ step $2 \Rightarrow|\mathrm{xy}|=\frac{.8321 \mathrm{x} 50}{.5547}=75 \operatorname{step} 3$

MR1 Gets $|y t|$ for $|x y|(90.14)$

A3 Gets 33.69° \& stops
$1 \quad \sin \angle \mathrm{ykx}=\frac{75}{100}$ step $1=0.75$ step $2 \Rightarrow|\angle \mathrm{ykx}|=48 \cdot 59^{\circ}=49^{\circ}$ step 3

$$
\operatorname{Cos} \angle \mathrm{kyx}=\frac{75}{100}=0.75 \quad \text { step } 1
$$

$2 \quad \Rightarrow|\angle \mathrm{kyx}|=41.24^{\circ}$
step 2

$$
\Rightarrow|\angle \mathrm{ykx}|=90^{\circ}-41.24=49^{\circ}
$$

step 3

* There are other methods, e.g. Pythagoras, Sine Rule on triangle kty
* Accept candidate's $|x y|$ from (c)(i)

A4 Gets 123.69° \& stops
Two other methods

$$
\begin{aligned}
& \Delta \mathrm{ykx} \frac{100}{\operatorname{Sin} 90^{\circ}}=\frac{75}{\sin \angle \mathrm{ykx}} \quad \text { step } 1 \quad \Rightarrow \quad \frac{100}{1}=\frac{75}{\sin \angle \mathrm{ykx}} \quad \text { step 2 } \\
& \Rightarrow 100 \operatorname{Sin} \angle \mathrm{yks}=75 \Rightarrow \operatorname{Sin} \angle \mathrm{ykx}=\frac{75}{100}=0.75 \Rightarrow|\angle \mathrm{ykx}|=49^{\circ} \quad \text { step 3 }
\end{aligned}
$$

$\Delta x y t \quad|y t|=90.14 \quad$ step 1
$4 \Delta y k t \quad \frac{90.14}{\operatorname{Sin} \angle y k x}=\frac{100}{\operatorname{Sin} 123.69^{\circ}} \quad$ step 2

$$
\Rightarrow 100 \operatorname{Sin} \angle \mathrm{ykx}=90.14 \operatorname{Sin} 123.69^{\circ} \quad \Rightarrow|\angle \mathrm{ykx}|=49^{\circ} \quad \text { step } 3
$$

QUESTION 6

Part (a)	$\mathbf{1 0}$ marks	Att 2,2
Part (b)	20 marks	Att 3,2,2
Part (c)	20 marks	Att 2,2,2,2

Part (a)

$10(5,5)$ marks
Att 2,2
(i) Show that 13 is the mean of the numbers $6,11,15,16,17$.
(ii) 14 is the mean of the numbers $6,11,15,16,17, x$.

Find the value of x.
(a)
$10(5,5)$ marks
Att 2,2
(i) $\frac{6+11+15+16+17}{5}=\frac{65}{5}=13$
(ii) $\frac{6+11+15+16+17+x}{6}=\frac{65+x}{6}=14 \Rightarrow 65+x=84 \Rightarrow x=19$
(i) B1 Incorrect denominator

S1 Numerical slips, same for (ii)
A1 Adds some or all of the numbers \& stops
A2 Division by 5
W1 Multiplies the 5 numbers instead of adding, same for (ii)
(ii) B1 Error in transposing

B2 Incorrect denominator
A1 Adds some or all of the numbers
A2 $6 \times 14=84$ \& stops
A3 States that the mean is $\frac{6+11+15+16+17+x}{6} \&$ stops

The duration of each log-on to the
internet in a public library was recorded
over a certain period.
The results are summarised in the following table:

Duration (minutes)	$0-3$	$3-6$	$6-9$	$9-15$	$15-21$	$21-30$
Number of log-ons	3	5	9	20	21	12

[Note: 3-6 means 3 minutes or more but less than 6 minutes etc.]
(i) Draw a histogram to illustrate the data in the table.
(ii) What was the total number of log-ons made?
(iii) In which class interval does the median lie?

Page 21

Blunders (-3)

B1 Scale not uniform
B2 Each width incorrect and inconsistent with candidate's scale
B3 Each height out of proportion, but if error is consistent apply once only
B4 Bars with correct width and height but separated
B5 'Number of log-ons' on the horizontal axis
B6 Use other type of graph
B7 Any other error apart from above
B8 Each missing bar to a max of 3
Attempts (3 marks)
A1 Axes scaled or partly scaled \& stops
A2 Calculates the heights only
A3 Frequency polygon / curve
Worthless (0)
W1 Pie-chart
(b)(ii)

* Remember answer 70 needs work for full marks

Blunders (-3)
B1 Adds heights instead of log-ons
B2 Adds $3+6+9+15 \ldots$ to get 84
Slips (-1)
S1 Incorrect addition or omits a number
Attempts (2 marks)
A1 Adds the mid-interval values (69)
A2 Any effort to add any two adjacent values
Worthless (0)
W1 Finds the mid-interval values \& stops
W2 looks up "log"of numbers

Blunders (-3)

B1 Shows adding, stops at 37. Fails to list class interval 9-15
B2 Adds heights (41.5) and concludes class interval is $15-21$

Slips (-1)
S1 Incorrect addition

Attempts (2 marks)

A1 70/ $2=35$ \& stops
A2 Some effort at adding 3,5,9,etc.
A3 Graphical. May state class interval after (c)(iii) or may return and state answer in part (c)

Part (c)

$20(5,5,5,5)$ marks
Att 2,2,2,2
(i) Copy the following cumulative frequency table into your answerbook and use the table in part (b) to complete it:

Duration (minutes)	<3	<6	<9	<15	<21	<30
Number of log-ons						

(ii) On graph paper construct the ogive.

Use your graph to estimate:
(iii) the median
(iv) the number of log-ons lasting at least 10 minutes.

(c)(i)				Att 2		
Duration (minutes)	<3	<6	<9	<15	<21	<30
Number of log-ons	3	8	17	37	58	70

Blunders (-3)

B1 Omits any number or puts numbers in the wrong places

Slips (-1)

S1 Incorrect addition

Attempts (2 mark)
A1 Any one value filled in correctly into table
Worthless (0)
W1 Copies table \& stops

A2 Any indication of addition

Ogive

* Accept ogive consistent with student's cumulative frequency table

Blunders (-3)
B1 Scale not uniform
B2 Points not joined or joined by line segments
B3 Each point omitted or plotted incorrectly (if not consistent or slip)
B4 Interchanges axes
B5 Draws histogram

Slips (-1)
S1 Slips in plotting points (to a max of 3)
Attempts (2 marks)
A1 Axes scaled or partly scaled \& stops
A3 Couples named e.g. $(3,3) \&$ stops

A2 Frequency polygon or curve
A4 Bar chart

Median = 14.4

* Accept answer consistent with candidate's graph (with tolerance ± 3)

Blunders (-3)
B1 Median read from wrong starting point of correct axis
B2 Mid-value of wrong axis taken as starting point (\& continues)
B3 Mathematical error in finding median of a histogram
B4 Stops dead in mid-air before reading corresponding value
Slips (-1)
S1 Median indicated but value not written
S2 Value just outside tolerance
Attempts (2 marks)
A1 Some attempt to find median on graph
A2 Attempt to find mode or mean
(c)(iv) 5 marks

Att 2
Log-ons lasting at least 10 minutes $50(70-20)$

* Accept answer consistent with candidate's graph (within tolerance ± 3)

Blunders (-3)
B1 Line drawn from wrong starting point of correct axis
B2 No subtraction
B3 Line drawn from 10 on the vertical axis
B4 Starting point correct but reading far outside of tolerance
Slips (-1)
S1 Starting point correct but reading just outside tolerance. Continues to subtract from 70
S2 $70+20$

