TEAM SELECTION TEST 1

MONDAY 28 MAY 2001

08.30-13.00

1. Let O be the circumcentre and H the orthocentre of the acute-angled triangle $A B C$. Show that the minimum value of $O P+H P$, as P varies over the perimeter of the triangle, is exactly the circumradius of $A B C$.
2. Show that $\{n \sqrt{3}\}>\frac{1}{n \sqrt{3}}$ for every positive integer n. Show also that, for every real $c>1$, there exists a positive integer n such that $\{n \sqrt{3}\}<\frac{c}{n \sqrt{3}}$. [For any positive real x, the symbol $\{x\}$ denotes the fractional part of x, in other words the part of x to the right of the decimal point - for example, we have $\{3 \cdot 1415\}=0 \cdot 1415$.]
3. The function F is defined on the non-negative integers and takes nonnegative integer values. For every non-negative integer n it satisfies
(i) $F(4 n)=F(2 n)+F(n)$
(ii) $F(4 n+2)=F(4 n)+1$
(iii) $F(2 n+1)=F(2 n)+1$.

Show that, for any positive integer m, the number of integers n with $0 \leq$ $n<2^{m}$ satisfying $F(4 n)=F(3 n)$ is precisely $F\left(2^{m+1}\right)$.

