NATIONAL COMMITTEE FOR MATHEMATICAL CONTESTS

Second International Selection Test

Reading, Saturday 10th May 1986 $3\frac{1}{2}$ hours

1. A, B, C, A', B', C' are six points on a circle such that the chords AA', BB', CC' meet in a point. Prove that

$$AB \cdot B'C' \cdot CA' = A'B' \cdot BC \cdot C'A.$$
 (*)

Is it true, conversely, that if A, B, C, A', B', C' are six points on a circle satisfying (*) then AA', BB', CC' are concurrent? Justify your answer.

- 2. Find, with proof, the number of different (i.e. non-congruent) triangles with sides of integer length whose perimeter is 1986 units.
- 3. Find, with proof, the largest real number k with the following property:

Whenever a, b, h are constants such that

$$ax^{2} + 2hx + b > 0$$

for all real numbers x, then

$$a(x^{2}+y^{2}) + b(z^{2}+1) + h\{xz+y+k(x-yz)\} > 0$$

for all real numbers x, y, z.

4. Solve the equations

$$x^{2}+(y-z)^{2} = a^{2},$$

 $y^{2}+(z-x)^{2} = b^{2},$
 $z^{2}+(x-y)^{2} = c^{2}$

for x, y, z, where a, b, c are given.

5. A sequence of polynomials $P_m(x,y)$, $m=0,1,2,\ldots$ in x and y is defined by $P_O(x,y)=1$ and

$$P_m(x,y) = (x+y)(y+1)P_{m-1}(x,y+1) - y^2 P_{m-1}(x,y)$$

for m>0. Prove that each $P_m(x,y)$ is symmetric, i.e. $P_m(x,y) = P_m(y,x)$.

6. Show that the sequence of integers $[n\sqrt{2}]$, n=1,2, ... contains an infinite number of integer powers of 2. Here [x] denotes the integer part of x; for example $[3\sqrt{2}] = [4.242...]=4$.