Next Selection Test: Paper 4

Oundle School, Northamptonshire

$$
6^{\text {th }} \text { June } 2012
$$

1. Determine all pairs (f, g) of functions from the set of real numbers to itself that satisfy

$$
g(f(x+y))=f(x)+(2 x+y) g(y)
$$

for all real numbers x and y.
2. Let $A B C$ be an acute triangle with circumcircle Γ. Let B^{\prime} be the midpoint of $A C$ and let C^{\prime} be the midpoint of $A B$. Let D be the foot of the altitude from A, and let G be the centroid of $A B C$. Let ω be a circle through B^{\prime} and C^{\prime} that is tangent to Γ at a point X distinct from A. Prove that D, G and X are collinear.
3. Let n be a positive integer and let $W=\ldots x_{-1}, x_{0}, x_{1}, x_{2}, \ldots$ be an infinite periodic word consisting of the letters a and b. Suppose that the minimal period N of W is greater than 2^{n}.
A finite nonempty word U is said to appear in W if there exist indices $k \leq l$ such that $U=x_{k} x_{k+1} \ldots x_{l}$. A finite word U is called ubiquitous if the four words $U a, U b, a U$ and $b U$ all appear in W. Prove that there are at least n ubiquitous finite nonempty words.

Each question is worth seven marks.
Time permitted: 4 hours, 30 minutes.

