NST 3

1 June 2010

1. Let $n \geq 2$ be an integer. At every point of the co-ordinate plane with integral co-ordinates (i, j) we write $i+j$ modulo n (an integer in the range $[0, n-1])$. Find all pairs (a, b) of positive integers such that the rectangle with vertices $(0,0),(a, 0),(a, b)$ and $(0, b)$ has both the following properties.
(a) The remainders $0,1, \ldots, n-1$ are each written the same number of times in its interior.
(b) The remainders $0,1, \ldots, n-1$ are each written the same number of times on its boundary.
2. Find all real numbers t for which there exist real numbers x, y, z such that each of the following equations is satisfied.

$$
3 x^{2}+3 x z+z^{2}=1, \quad 3 y^{2}+3 y z+z^{2}=4, \quad x^{2}-x y+y^{2}=t .
$$

3. Let p be a prime number which leaves remainder 3 on division by 4 . Consider the equation

$$
(p+2) x^{2}-(p+1) y^{2}+p x+(p+2) y=1
$$

(a) Suppose that x, y are positive integers which satisfy the equation. Show that p divides x.
(b) Show that the equation has infinitely many solutions in positive integers.

Each problem is worth 7 points.
Time: 4 hours 30 minutes.

