Next Selection Test: Paper 2

Oundle School, Northamptonshire

$4^{\text {th }}$ June 2012

1. Let $A B C$ be an acute triangle. Let ω be a circle whose centre L lies on the side $B C$. Suppose that ω is tangent to $A B$ at B^{\prime} and to $A C$ at C^{\prime}. Suppose also that the circumcenter O of the triangle $A B C$ lies on the shorter arc $B^{\prime} C^{\prime}$ of ω. Prove that the circumcircle of $A B C$ and ω meet at two points.
2. Determine the greatest positive integer k that satisfies the following property: the set of positive integers can be partitioned into k subsets A_{1}, \ldots, A_{k} such that for all integers $n \geq 15$ and all $i \in\{1, \ldots, k\}$ there exist two distinct elements of A_{i} whose sum is n.
3. Let p be an odd prime number. For every integer a, define the number

$$
S_{a}=\frac{a}{1}+\frac{a^{2}}{2}+\cdots+\frac{a^{p-1}}{p-1} .
$$

Let m and n be integers such that

$$
S_{3}+S_{4}-3 S_{2}=\frac{m}{n}
$$

Show that p divides m.

Each question is worth seven marks.
Time permitted: 4 hours, 30 minutes.

