NST 2

31 May 2010

1. The sequence $\left(a_{i}\right)$ is defined by $a_{0}=2, a_{1}=1$, and for $n \geq 2$ we let $a_{n}=a_{n-1}+a_{n-2}$. Show that if p is a prime divisor of $a_{2 k}-2$, then p also divides $a_{2 k+1}-1$.
2. Let I be the incentre of triangle $A B C$. The incircle touches $A B$ and $B C$ at X and Y respectively. The line $X I$ meets the incircle again at M. Let X^{\prime} be the point of intersection of $A B$ and $C M$. The point L on the segment $X^{\prime} C$ is such that $X^{\prime} L=C M$.
Prove that A, L and Y are collinear if, and only if, $|A B|=|A C|$.
3. Let a, b and c be positive real numbers. Suppose that $a^{2}+b^{2}+c^{2}+a b c=4$. Show that $a+b+c \leq 3$.
