UK IMO Next Selection Test 2

Oundle 2005

1. Let $n \geq 2$ be a natural number. A pyramid \mathcal{P} has base $A_{1} A_{2} \cdots A_{2 n}$ and apex O. The polygon $A_{1} A_{2} \cdots A_{2 n}$ is regular and the point C is its centre. The line $O C$ is perpendicular to the plane of the base of \mathcal{P}. A sphere passes through O and meets each of the line segments $O A_{i}$ internally. For each $i=1,2, \ldots, 2 n$ let X_{i} be the point (other than O) where the sphere meets $O A_{i}$. Prove

$$
O X_{1}+O X_{3}+\cdots+O X_{2 n-1}=O X_{2}+O X_{4}+\cdots+O X_{2 n}
$$

2. Find the number of subsets B of $\{1,2,3, \ldots, 2005\}$ such that the sum of the elements of B is congruent to 2006 modulo 2048.
3. Let $n \geq 3$ be an integer. Consider positive real numbers $a_{1}, a_{2}, \ldots, a_{n}$ such that $a_{1} a_{2} \cdots a_{n}=1$. Show that the following inequality holds

$$
\frac{a_{1}+3}{\left(a_{1}+1\right)^{2}}+\frac{a_{2}+3}{\left(a_{2}+1\right)^{2}}+\cdots+\frac{a_{n}+3}{\left(a_{n}+1\right)^{2}} \geq 3
$$

