Next Selection Test: Paper 1

Oundle School, Northamptonshire

$$
3^{\text {rd }} \text { June } 2012
$$

1. For any integer $d>0$, let $f(d)$ be the smallest positive integer that has exactly d positive divisors (so, for example, we have $f(1)=1$, $f(5)=16$, and $f(6)=12$). Prove that, for every integer $k \geq 0$, the number $f\left(2^{k}\right)$ divides $f\left(2^{k+1}\right)$.
2. Let p be a prime and n a positive integer. We write $\mathbb{Z} / p^{n} \mathbb{Z}$ for the set of congruence classes modulo p^{n}. Determine the number of functions $f:\left(\mathbb{Z} / p^{n} \mathbb{Z}\right) \rightarrow\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)$ satisfying the condition

$$
f(a)+f(b)=f(a+b+p a b)
$$

for all $a, b \in \mathbb{Z} / p^{n} \mathbb{Z}$.
3. Let $A B C$ be a triangle with incentre I and circumcircle Γ. Let D and E be the second intersection points of Γ with the lines $A I$ and $B I$ respectively. The chord $D E$ meets $A C$ at a point F, and $B C$ at a point G. Let P be the intersection point of the line through F parallel to $A D$ and the line through G parallel to $B E$. Suppose that the tangents to Γ at A and at B meet at a point K. Prove that the three lines $A E$, $B D$ and $K P$ are either parallel or concurrent.

Each question is worth seven marks. Time permitted: 4 hours, 30 minutes.

