NST 1

30 May 2010

1. Consider a regular 2007-gon. Find the smallest positive integer k having the property that in every set of k vertices, there are four which form a quadrilateral with three edges being edges of the regular polygon.
2. Let b be a positive real number. Find all functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ satisfying

$$
f(x+y)=f(x) \cdot 3^{b^{y}+f(y)-1}+b^{x}\left(3^{b^{y}+f(y)-1}-b^{y}\right)
$$

for all $x, y \in \mathbb{R}$.
3. Let $A B C D$ be a cyclic trapezium with $A D \| B C$ and $|A D|<|B C|$. The circle is called Γ, and has centre O. Let P be a variable point on the part of the ray $B C$ that is beyond C. It is given that $P A$ is not tangent to Γ (GCS: I don't see how it could be, but that is what the question says!). The circle with diameter $P D$ meets Γ again at E. Let M be the intersection of the lines $B C$ and $D E$, and N be the second point of intersection of the line $P A$ and Γ.

Prove that the lines $M N$ pass through a fixed point as P varies.

Each problem is worth 7 points.
Time: 4 hours 30 minutes.

