UK IMO FST2

Trinity College, Cambridge

11 April 2005

- 1. The circle Γ and the line l do not intersect. Let AB be the diameter of Γ which is perpendicular to l, with B closer to l than is A. An arbitrary point $C \neq A, B$ is chosen on Γ . The line AC intersects l at D. The line DE is tangent to Γ at E, with B and E on the same side of AC. Let BE intersect l at F, and let AF intersect Γ at $G \neq A$. Prove that the reflection of G in AB lies on the line CF.
- 2. Let n and k be positive integers. There are given n circles in the plane. Every pair of them intersect in two distinct points, and all points of intersection are pairwise distinct. Each intersection point must be coloured with one of n distinct colours and each colour must be used at least once. Exactly k distinct colours must occur on each circle. Find all values of $n \ge 2$ and k for which such a colouring is possible.
- 3. Let N be a positive integer. Two players Alice and Bob take turns to write numbers from the set $\{1, 2, ..., N\}$ on a blackboard. Alice begins the game by writing 1 on her first move. If a player has written n on a certain move, the adversary is then allowed to write either n + 1 or 2n (provided the number does not exceed N). The player who writes N wins. We say that N is of type A or type B according to whether Alice or Bob has a winning strategy.
 - (a) Determine whether N = 2004 is of type A or type B.
 - (b) Find the least N > 2004 whose type is different from the type of 2004.