First Selection Test 2

$$
5-i v-2004
$$

1. Let $a_{i j}, i=1,2,3 ; j=1,2,3$ be real numbers such that $a_{i j}$ is positive for $i=j$ and negative for $i \neq j$. Prove that there exist positive real numbers c_{1}, c_{2}, c_{3} such that the numbers

$$
a_{11} c_{1}+a_{12} c_{2}+a_{13} c_{3}, \quad a_{21} c_{1}+a_{22} c_{2}+a_{23} c_{3}, \quad a_{31} c_{1}+a_{32} c_{2}+a_{33} c_{3}
$$

are all negative, all positive or all zero.
2. Let $A B C$ be a triangle and let P be a point in its interior. Denote by D, E and F the feet of the perpendiculars from P to the lines $B C$, $C A$ and $A B$ respectively. Suppose that

$$
A P^{2}+P D^{2}=B P^{2}+P E^{2}=C P^{2}+P F^{2}
$$

Denote the excentres of triangle $A B C$ by I_{A}, I_{B} and I_{C} in the natural notation. Prove that P is the circumcentre of triangle $I_{A} I_{B} I_{C}$.
3. The sequence $a_{0}, a_{1}, a_{2}, \ldots$ is defined as follows:

$$
a_{0}=2, \quad a_{k+1}=2 a_{k}^{2}-1 \text { for } k \geq 0
$$

Prove that if an odd prime number p divides a_{n}, then 2^{n+3} divides $p^{2}-1$.

