First Selection Test: Paper 1

Trinity College, Cambridge

$31^{\text {st }}$ March 2012

1. Let $A B C D$ be a cyclic quadrilateral so that $B C$ and $A D$ meet at a point P. Consider a point Q, different from B, on the line $B P$ such that $P Q=B P$, and construct the parallelograms $C A Q R$ and $D B C S$. Prove that the points C, Q, R, S are concyclic.
2. Determine the maximum number of kings that can be placed on a 12×12 chessboard so that each king threatens exactly one other king. (No two kings may share a cell, and two kings threaten each other if they inhabit orthogonally or diagonally adjacent cells).
3. We write $j(n)$ for the number of ones in the number n when it is written in binary notation. Let $k \geq 2$ be a positive integer.
(a) Show that there is an increasing sequence of odd positive integers a_{1}, a_{2}, \ldots such that $j\left(a_{1} a_{2} \cdots a_{n}\right)=k$ for all n.
(b) Show that there is some N such that $j(1 \cdot 3 \cdots \cdots(2 n+1))>k$ for all $n>N$.

Each question is worth seven marks. Time permitted: 4 hours, 30 minutes.

