First Selection Test 1

3-iv-2004

1. Three distinct points A, B and C are fixed on a line in that order. Let Γ be a circle passing through A and C whose centre does not lie on the line $A C$. Denote by P the intersection of the tangents to Γ at A and C. Suppose that Γ meets the line segment $P B$ at Q. Prove that the intersection of the bisector of $\angle A Q C$ and the line $A C$ does not depend on the choice of Γ.
2. Let $D_{1}, D_{2}, \ldots, D_{n}$ be distinct closed disks in the plane. (A closed disk consists of the union of a circle and the region in its interior.) Suppose that every point of the plane is contained in at most 2004 disks D_{i}. Prove that there exists a disk D_{k} which intersects at most 7•2004-1 other disks D_{i}.
3. Let \mathbb{R}^{+}be the set of positive real numbers. Find all functions $f: \mathbb{R}^{+} \rightarrow$ \mathbb{R}^{+}that satisfy the following conditions:
(i) $f(x y z)+f(x)+f(y)+f(z)=f(\sqrt{x y}) f(\sqrt{y z}) f(\sqrt{z x})$ for all $x, y, z \in \mathbb{R}^{+}$;
(ii) $f(x)<f(y)$ for all $1 \leq x<y$.
