FINAL SELECTION TEST

SUNDAY 13 APRIL 1997

Time allowed: $4\frac{1}{2}$ hours

1. A finite sequence of integers $a_0, a_1, ..., a_n$ is called quadratic if

$$|a_i - a_{i-1}| = i^2$$
 for $i = 1, 2, ..., n$.

(i) Prove that, for any two integers b and c, there exist a positive integer n and a quadratic sequence $a_0, a_1, ..., a_n$ with

$$a_0 = b$$
 and $a_n = c$.

(ii) Find the smallest positive integer n for which there exists a quadratic sequence $a_0, a_1, ..., a_n$ with

$$a_0 = 0$$
 and $a_n = 1997$.

- 2. Determine whether or not there exist two disjoint infinite sets A and B of points in the plane satisfying the following two conditions:
 - (a) no three points in $A \cup B$ are collinear, and the distance between any two points in $A \cup B$ is at least 1;
 - (b) there is a point of A in any triangle whose vertices are in B, and there is a point of B in any triangle whose vertices are in A.
- 3. Let ABC be an acute-angled triangle with BC > CA.

Let O be the circumcentre, H the orthocentre and F the foot of the altitude CH of $\triangle ABC$.

Let the perpendicular to OF at F meet the side CA at P.

Prove that $\angle FHP = \angle BAC$.

What happens when $BC \leq CA$, but the triangle is still acute-angled?