# INTERNATIONAL INDIAN SCHOOL DAMMAM FIRST TERMINAL EXAMINATION-2012 

## SET-A.

Class: XI.
Subject: CHEMISTRY

Time: 3 hrs.
Max. Marks: 70.

General Instructions.

1. All questions are compulsory.
2. Questions 1 to 8 are very short answer questions and carry one mark.
3. Questions 9 tol8 are short answer questions and carry two marks.
4. Questions 19 to 27 are short answer questions and carry three marks.
5. Questions $28,29 \& 30$ are long answer questions and carry five marks.
6. Use log tables if necessary.
7. Calculate the amount of Carbon dioxide that could be produced when one mole of carbon is burnt in 16 g of dioxygen.
8. 1 M or 1 m solution, which is more concentrated? Why?
9. What is photoelectric effect?
10. How many electrons in an atom may have the following quantum numbers?

11. State modern periodic law.
12. Draw the Lewis dot structure of CO.
13. Write the general outer electronic configuration of $f$ - Block elements.
14. Define lattice Enthalpy.
15. State and illustrate the law of multiple proportion.
16. (a) Boron has two isotopes, the relative abundance of 1 OB is $20 \%$ and that of 11B is $80 \%$. Find the average atomic mass of Boron.
(b) How many significant figures are present in the following.(1) 0.0025 (2) 208
17. (a) write the mathematical expression of Heisenberg's uncertainty principle.
(b) State Pauli Exclusion principle.
18. Calculate the energy associated with the first orbit of He.

What is the radius of this orbit.
13. (a) Give any two properties of cathode rays.
(b) What are the limitations of Bohr's model for hydrogen atom.
14. Concentrated $\mathrm{HzSO}_{4}$ is $98 \%$ by weight and density 1.84 gfcc . What volume of conc. acid is required to make 5.0 L of $0.50 \mathrm{M} . \mathrm{HzSO}_{4}$.
15. (a) On the basis of quantum numbers, justify that the sixth period of the periodic table should have 32 elements.
(b) write the electronic configuration of Cu (atomic number 29).
16. Discuss the shape of the following molecules using the VSEPR model.
(a) BCb (b) AsFs
(c) SF6
(d) SF4.
17. Define electronegativity. How does it differ from electron gain enthalpy?

OR
Explain the formation of Hz molecule on the basis of valence bond theory.
18. (a) What is meant by hybridisation of atomic orbitals?
(b) Which hybrid orbitals are used by carbon atoms in the following molecules?
(i) CH 3 CHO (ii) CH 3 COOH
19. How much magnesium sulphide can be obtained from 2.00 g of magnesium and 2.00 g of sulphur by the reaction $\mathrm{Mg}+\mathrm{S} \sim \mathrm{MgS}$. ? Which is the limiting reagent? Calculate the amount of one of the reactants which remains unreacted? $(\mathrm{Mg}=24 \mathrm{u}, \mathrm{S}=32 \mathrm{u})$
20. An organic compound on analysis gave the following data: $\mathrm{C}=57.82 \%, \mathrm{H}=3.6 \%$ and the rest is Oxygen. Its molecular mass is 166 . Find its empirical and molecular formula. ( $\mathrm{H}=\mathrm{lu}, \mathrm{C}=12 \mathrm{u}, 0=16 \mathrm{u}$ ).
21. (a) State de Broglie relation.
(b) State Hund's rule of maximum multiplicity.
(c) Draw the shape of $\mathrm{dz}^{\mathrm{Z}}$ orbital.
22. (a) Write IUPAC name and symbol of an element with atomic number 117.
(b) How would you explain the fact that the first ionization enthalpy of sodium is lower than that of magnesium but its second ionization enthalpy is higher than that of magnesium?
23. Describe the hybridisation in case of PCls. Why are the axial bonds longer as compared to equatorial bonds?
24. (a) Which out of ${ }^{\mathrm{NH}} 3$ and NF 3 has higher dipole moment and Why.?
(b) Give any two limitations ofthe octet rule.
25. (a) What are the frequency and wave length of a photon emitted during a transition from $n=5$ state to the $n=2$ state in the hydrogen atom? ( $\mathrm{h}=6.626 \times 10-{ }^{34} \mathrm{Js}$ )
(b) Write Rydberg equation for Balmer series.

OR
(a) The threshold frequency $V$. for a metal is $7.0 \times 10^{14} 5-^{1}$. Calculate the kinetic energy of an electron emitted when radiation of frequency $v=1.0 \times 10^{15} \mathrm{~S}^{-1}$ hits the metal.
(b) An electron is in one of the $3 d$ orbitals. Give the possible values of $\mathrm{n}, I$ and mi for this electron.
26. (a) Consider the following species:

N3- , $0^{2}-$, F--, Nat , Mgz+ and AJ3+.
(i) What is common in them?
(ii) Arrange them in the order of increasing ionic radii.
(b) Would you expect the first ionization enthalpies for two isotopes of the same element to be the same or different? Justify your answer.
27. Compare the relative stabilities of the following species and indicate the magnetic properties of $\mathrm{Oz} . \mathrm{Oz}^{\prime \prime}$, Draw the Molecular Orbital diagram of Oz molecule.
28. (a) Yellow light emitted from a sodium lamp has a wave length of 580 nm . Calculate the frequency and wave number of the yellow light.
-tb)-Showthat the circumference of the Bohrorbit for the hydrogen atom is an integral multiple of the de Broglie wavelength associated with the electron revolving around the orbit.
(c) Explain why atoms in the half filled and completely filled orbitals have extra stability.
(d) What is Bohr's frequency rule?

OR
(a) Calculate the wave length, frequency and wave number of a light whose period is $2.0 \times 10-{ }^{-1} 0 \mathrm{~s}$.
(b) Which has higher energy $5 d$ or 65 orbital? Explain your answer.
(c) What is Planck's quantum theory?
(d) What is Bohr's radius? Give its value.
29. Give reason:
(a) Electron gain enthalpy of sulphur is greater than oxygen.
(b) Ionization enthalpy of beryllium is greater than boron.
(c) Noble gases show positive electron gain enthalpy.
(d) Identify the position of the element with electronic configuration
(i) $\mathrm{ns}^{2} \mathrm{np}+(\mathrm{n}=3)$
(ii) $(\mathrm{n}-1) \mathrm{d}^{2} \mathrm{~ns}-\mathrm{-}(\mathrm{n}=4)$.
(a) The first ionization enthalpy values (in $\mathrm{kl} / \mathrm{rnol}]$ of group 13 elements are:

| B | AI | Ca | In | TI |
| :--- | :--- | :--- | :---: | :---: |
| 801 | 577 | 579 | 558 | 589 |

How would you explain this deviation from the general trend?
(b) Which of the following will have the most negative electron gain enthalpy and which the least negative?
P, 5, Cl, F. Explain your answer.
(c) Why do elements in the same group have similar physical and chemical properties?
30. (a) Write the resonance structures for carbonate ion. How resonance is related to stability of the molecules?
(b) Although both C 02 and H 20 are triatomic molecules, the shape of H 20 molecule is bent while that of CO 2 is linear. Explain this on the basis of dipole moment.
(c) Define Hydrogen bond.

## OR

(a) Apart from tetrahedral geometry, another possible geometry for CH 4 is square planar. Explain why GH4 is not square planar?
(b) Although geometries of NH 3 and H 20 molecules are distorted tetrahedral, bond angle in water is less than that of ammonia. Discuss.
(c) Arrange the bonds in order of increasing ionic character in the molecules: LiF, K20, N2, 502 and e1F3.

$$
======X=====
$$

(4)

# INTERNATIONAL INDIAN SCHOOL DAMMAM FIRST TERMINAL EXAMINATION-2012 

## SET-B.

Class: XI.
Subject: CHEMISTRY

Time: 3 hrs.
Max. Marks: 70.

General Instructions.

1. All questions are compulsory.
2. Questions 1 to 8 are very short answer questions and carry one mark.
3. Questions 9 to 18 are short answer questions and carry two marks.
4. Questions 19 to 27 are short answer questions and carry three marks.
5. Questions 28,29 \& 30 are long answer questions and carry five marks.
6. Use log tables if necessary.
7. Calculate the amount of Carbon dioxide that could be produced when one mole of carbon is burnt in 8 g of dioxygen.
8. 1 M or 1 m solution, which is less concentrated? Why?
9. What is threshold frequency?
10. How many electrons in an atom may have the following quantum numbers?
(a) $\mathrm{n}=3, \mathrm{~ms}=-1 f z$ (b) $\mathrm{n}=4,1=0$.
11. State Mendeleev's periodic law.
12. Draw the Lewis dot structure of C 02 .
13. Write the general outer electronic configuration of $f$ - Block elements.
14. Define Bond Enthalpy.
15. Calculate the energy associated with the first orbit of He . What is the radius of this orbit.
16. (a) Chlorine has two isotopes, the relative abundance of 35 CI is $75.77 \%$ and that of 37 CI is $24.23 \%$. Find the average atomic mass of Chlorine.
(b) How many significant figures are present in the following
(1) 0.0035 (2) 408
17. (a) write the mathematical expression of Heisenberg's uncertainty principle.
(b) State Pauli Exclusion principle.
18. State and illustrate the law of multiple proportion
19. (a) Give any two properties of canal rays.
(b) What are the limitations of Bohr's model for hydrogen atom.
20. (a) What is meant by hybridisation of atomic orbitals?
(b) Which hybrid orbitals are used by carbon atoms in the following molecules?
(i) CH 3 CHO
(ii) CH 3 COOH
21. (a) On the basis of quantum numbers, justify that the sixth period of the periodic table should have 32 elements.
(b) write the electronic configuration of Cr (atomic number 24).
22. Discuss the shape of the following molecules using the VSEPR model.
(a) BCh
(b) AsFs
(c) SF6
(d) SF4.
23. Define electronegativity. How does it differ from electron gain enthalpy?

OR
Explain the formation of H 2 molecule on the basis of valence bond theory.
18. Concentrated H 2 SO 04 is $98 \%$ by weight and density 1.84 gfcc . What volume of cone. acid is required to make 5.0 L of 0.50 M . H2S04.
19. (a) State de Broglie relation.
(b) State Hund's rule of maximum multiplicity.
(c) Draw the shape of $\mathrm{d}\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right)$ orbital.
20. (a) Which out ofNH3 and NF3has higher dipole moment and Why.?
(b) Give any two limitations of the octet rule.
21. How much magnesium sulphide can be obtained from 2.00 g of magnesium and 2.00 g of sulphur by the reaction $\mathrm{Mg}+\mathrm{S}-7 \mathrm{MgS}$. ? Which is the limiting reagent? Calculate the amount of one of the reactants which remains unreacted? $(\mathrm{Mg}=24 \mathrm{u}, \mathrm{S}=32 \mathrm{u})$
22. (a) Write IUPAC name and symbol of an element with atomic number 117.
(b) How would you explain the fact that the first ionization enthalpy of sodium is lower than that of magnesium but its second ionization enthalpy is higher than that of magnesium?
23. Describe the hybridisation in case of PCls. Why are the axial bonds longer as compared to equatorial bonds?
24. An organic compound on analysis gave the following data: $\mathrm{C}=57.82 \%, \mathrm{H}=3.6 \%$ and the rest is Oxygen. Its molecular mass is 166 . Find its empirical and molecular formula. ( $\mathrm{H}=\mathrm{lu}, \mathrm{C}=12 \mathrm{u}, 0=16 \mathrm{u}$ )
25. (a) What are the frequency and wave length of a photon emitted during a transition from $n=5$ state to the $n=2$ state in the hydrogen atom? (h=6.626x 10- ${ }^{34}$ [s )
(b) Write Rydberg equation for Balmer series.

OR
(a) The threshold frequency ve for a metal is $7.0 \times 10^{14} 5-^{-1}$. Calculate the kinetic energy of an electron emitted when radiation of frequency $v=1.0 \times 10^{15} \mathrm{~S}^{-1}$ hits the metal.
(b) An electron is in one of the $3 d$ orbitals. Give the possible values of $n, I$ and $m$, for this electron.
26. Compare the relative stabilities of the following species and indicate the magnetic properties of $02,02+$. Draw the Molecular Orbital diagram of 02 molecule.
27. (a) Consider the following species:

N3- , $0^{2}-, ~ F--, N a+. ~ M g 2+$ and AJ3+ .
(i) What is common in them?
.. (ii) Arrange them in the order of increasing ionic radii.
'(b) Would you expect the first ionization enthalpies for two isotopes of the same element to be the same or different? Justify your answer,
28.-(a) Yellow light emitted from a sodium lamp has a wave length of 580 nm .

Calculate the frequency and wave number of the yellow light.
(b-) $\sim$ Show that the ci-rcumference of the-Bohr orbit for-the-hydrogen atom is an integral multiple of the de Broglie wavelength associated with the electron revolving around the orbit.
(c) Explain why atoms in the half filled and completely filled orbitals have extra stability,
(d) What is Bohr's frequency rule?

## OR

(a) Calculate the wave length, frequency and wave number of a light whose period is $2.0 \times 10-{ }^{1} 0 \mathrm{~s}$,
(b) Which has higher energy Sd or 65 orbital? Explain your answer.
(c) What is Planck's quantum theory?
(d) What is Bohr's radius? Give its value.
29. Give reason:
(a) Electron gain enthalpy of sulphur is greater than oxygen.
(b) Ionization enthalpy of beryllium is greater than boron.
(c) Noble gases show positive electron gain enthalpy.
[d) Identify the position of the element with electronic configuration
(i) $\mathrm{ns}-\mathrm{np}+(\mathrm{n}=3)$
(ii) $(\mathrm{n}-1) \mathrm{d}^{2} \mathrm{~ns}-(\mathrm{n}=4)$.
(a) The first ionization enthalpy values (in $\mathrm{kl} / \mathrm{rnol}$ ) of group 13 elements are:
B $\mathrm{Al} \quad \mathrm{Ga} \quad$ In $\quad$ TI
$801577 \quad 579 \quad 558 \quad 589$

How would you explain this deviation from the general trend?
(b) Which of the following will have the most negative electron gain enthalpy and which the least negative?
P, S, Cl, F. Explain your answer.
(c) Why do elements in the same group have similar physical and chemical properties?
30. (a) Apart from tetrahedral geometry, another possible geometry for CH 4 is square planar. Explain why CH4 is not square planar?
(b) Although geometries of NH3 and H 20 molecules are distorted tetrahedral, bond angle in water is less than that of ammonia. Discuss.
(c) Arrange the bonds in order of increasing ionic character in the molecules.

LiF, K20, N2, S02 and CIF3.

OR
(a) Write the resonance structures for carbonate ion. How resonance is related to stability of the molecules?
\{b] Although bothCu, and Hzu are triatomic molecules.the shape QLH20 molecule is bent while that of C 02 is linear. Explain this on the basis of dipole moment.
ec) Define Hydrogen bond.

$$
======X=====
$$

