

MARKETING INFORMATION ANALYSIS I (MIA I)

General Comments

1. As is customary, we begin these reports with an invitation to all candidates to pay attention to these comments and to learn from their content. While these reports are designed to provide an overview of students’ performance in the individual subjects, they also provide guidance to those who fail a particular paper. They are designed to be helpful and really should be compulsory reading for all candidates. For that reason they are posted on the MII website.
2. Overall, the standard achieved (56\% pass) was pretty good and almost exactly the same as last May's result.
3. Unfortunately, many students did very badly. For example, 30% had a mark of 25 or less. In many of these cases only 2 or 3 questions were attempted. It is a matter of practice, as much of the material is not difficult when you are shown how to do it.
4. Students still lose marks unnecessarily through a lack of consciousness that the answers they present cannot be correct. A significant number of answers presented, could and should have been recognised as impossible, had an estimate been made. May I illustrate what I mean? For example, it should be evident that the mean of ages ranging from 16 to 87 cannot be 10. Yet such answers have continued to appear. Nor can a correlation coefficient result in a score of 3.45 . Again, the sample size necessary to meet certain conditions cannot be 12% or $€ 385$. Making an estimate of a probable answer in any calculation is still a valuable skill, even with computers and calculators at our disposal. Such "inspection for reasonableness" will usually uncover the fact that a formula is written incorrectly or that the sum of the frequencies (sum of F) and sum of mid-points (sum of X) columns are confused, or that, for example, an important square root sign has disappeared halfway down a particular calculation. Even if you do not uncover some simple error, the strategy of making an estimate and writing it down as such, may prove valuable. Examiners are just looking for opportunities to reward people and so might be more lenient to a candidate who recognises that his/her answer cannot be correct.
5. Again, as you know, you must really answer the 5 questions, particularly if you are weak. In this paper, the number of topics students had mastered is too few. As usual, the analysis of time series topped the list of competencies. Again, as usual, the majority of students achieved a good grade in calculating the mean and standard deviation. However, similar mastery was not apparent when they were dealing with topics that seem to be equally basic, such as calculating either correlation or regression or a sample size, or removing the effect of inflation from wages. As these will always come up either Summer or Autumn- you should be prepared.
6. I am delighted to report that as many students (16\%) scored an A grade as achieved a C. Top grades were over 90%, which shows that good marks are achievable and high grades or full marks were achieved for most of the topics examined.
7. This paper is quite predictable as it contains a number of distinct topics, each of which can only be asked in a finite number of ways. The likelihood is that a candidate who passed both of last year's papers would have had little bother with this one. In other words, the best way to prepare for the next MIA 1 paper is to take the past set down off the website (at least 2 papers) and multiply the appropriate numbers by 2.

Comments on individual questions.

Question 1

Every student knows something about sampling but inevitably they lack the precision of thinking that is necessary. People should know how to carry out a systematic sample of 300 students from a college where 6000 are registered. Again, it is very easy to give reason why a researcher might use stratified rather than simple random sampling. These are basically 3 or 4 line answers.

Again, the calculation of a 95% confidence interval is an important issue which is not very difficult. Every market researcher should understand such concepts and should be able to do the calculations.

Question 2

Every statistics paper contains an examination of either mean, mode or median and this was no exception. Here, 50 pieces of raw data were given and a histogram was required. Then the standard deviation of the data was required. The examiner asked for the uses of a Lorenz curve and a sketch showing its general shape. This was asked in order to show that charts such as Zcharts, Lorenz curves and semi-log graphs are sometimes quite helpful in the presentation of business performance.

Question 3

This year I concentrated on the Consumer Price Index (CPI). The calculation of 'real' wages was fairly poor as many candidates made an index of wages for males and for females and just left it at that. Most neglected to remove the effect of inflation, as measured by the CPI. When interpreting the data, the key issue is that real wages rose for both females and males and the data showed that the gap closed over the time period examined. Many were unable to use the CPI to index link monthly pay. Too often, the answer was just parachuted onto the page with little explanation. Good exam technique requires the notification of what you are attempting to do. Even if not totally correct, marks may be gained if your thinking can be identified.

Question 4

This was easily the best question with most attempting it and many scoring very high marks. The only reminder is that the graph should have a heading, have clearly identifiable labels on each axis and, in this case, include the trend line also.

Question 5

This was also very popular but many students got confused in their identification of the independent variable. Here the minutes of exercise were varied. Generally it was well done. Reproducing the relevant formulae is not an answer to the description of correlation/regression. Good students gave an example to illustrate the difference between the two concepts.

Question 6

As usual, few serious attempts were made here. For parts (a) and (b) I would advise using a tree diagram and then the answers will appear quite simply. When dealing with any question involving the normal curve, students are advised to sketch the curve in order to clearly see what must be calculated. This would have improved the attempts made in this area. As for the Poisson distribution, this section produced a few marks for those who attempted it.

Question 7

While this section of the course attracted few attempts, the results were better than expected. Topics such as the testing of hypotheses regarding the means of small samples and the chisquare test are ones in which a little practice will pay dividends. The questions are fairly routine and don't entail significant calculations.

Question 8

This question required a research proposal regarding the attitudes and behaviour of Irish drivers regarding penalty points. In essence, this is the complete blueprint for the research. All the decisions are outlined and justified. It is insufficient to state, for example, that 'a sample must be taken' or "I must sort out my research objectives and how I will conduct this research". You must outline the topics that will be covered, decide who is to be included, how many will be chosen and how they are to be selected so that they are a fair representation of the target population. The proposal must contain sufficient decisions that someone else could carry out your instructions in your absence.

Finally, may I thank the student who told me in astonishing detail how many people throughout Ireland had accumulated 1, 2, 4, and even 8 penalty points! Fortunately, for the rest of you, such a photographic memory is unnecessary to give a good answer to the question asked.

