V-A4-II-Hf-Ex-12-B-38
Paper IV: Complex Analysis

Con. 6173-12.

Paper IV

Scheme A (External)

(3 Hours)

[Total Marks: 100

Scheme B (Internal)

(2 Hours)

[Total Marks: 40

N.B.: (1) Scheme A (External) Students should attempt any five questions.

- (2) Scheme B (Internal) Students should attempt any three questions.
- (3) Write on the top of your answer book the scheme under which you are appearing.
- (4) All questions carry equal marks.
- 1. (a) Prove that a complex differentiable function is continuous.
 - (b) Give an example of a continuous function which is not complex differentiable.
 - (c) Compute values of arg(z) in the interval $(-\pi, \pi)$ for Z = -1 i.
- 2. (a) Construct the Stereographic Projection map.
 - (b) Verify the continuity of the following function f of the extended complex plane

$$\mathbb{C}U\{\infty\}$$
 at the point $a=-\frac{3}{4}:$

$$f(z) = \begin{cases} \infty & \text{if } Z = -\frac{3}{4}, \\ \frac{Z+1}{4Z+3} & \text{if } Z \neq -\frac{3}{4} \end{cases}$$

- 3. (a) State and prove the Ratio-Test for a series of complex numbers.
 - (b) Prove that the series $\sum_{n=0}^{\infty} \frac{j^n}{n}$ converges.
- 4. (a) State and prove the Cauchy Integral formula.

(b) Evaluate
$$\int_{C} \frac{\sin(\pi z)}{z - \frac{1}{2}}$$

where C is the unit circle: |z| = 1 oriented clock-wise.

- 5. (a) Let f be an analytic function defined on a domain U. Let $a \in U$ and r > 0 such that $\overline{B}(a, r) \subset U$. Prove that f has a power series expansion in B(a, r)
 - (b) Let f be a non-constant analytic function difined on a domain U. Let

$$S = \left\{ z \in U \mid f(z) = 0 \right\}.$$

ITURN OVER

Con. 6173-YG-8335-12.

Prove that S is a discrete subset of U.

- State and prove the maximum modulus principle for an analytic function.
 - Find the maximum of $|\exp(-z)|$ on the open ball |z| < 4. (b)
- 7. (a) Prove that any non-constant analytic map is an open map. (b) Let $f(z) = z^2$ for all complex numbers z. Find the image of the open set

$$\left\{ x + iy \mid x < 0 \text{ and } y > 0 \right\}$$

under the map f.

- Find the Laurent expansion of $f(z) = \frac{1}{Z(Z-1)(Z-2)}$ in the annular region 1 < |Z| < 2.
 - Compute the residue of $f(z) = \frac{\sin(z)}{z^4}$ at the pole z = 0.

ws-Sept, 2012 (a) 27 Paper I: Algebra - I
Con. 6157-12.

(3 Hours)

Total Marks: 100

15/10/12

[Total Marks: 40

External (Scheme A)] Internal (Scheme B)]

(2 Hours)

N. B.: (1) Scheme-A Students answer any five questions.

(2) Scheme-B Students answer any three questions.

(3) All questions carry equal marks.

(4) Write on the top of your answer book the scheme under which you are appearing.

- 1. (a) Let G be a group and Z(G) be the center of G. If G/Z(G) is cyclic, then show that G is abelian.
 - (b) Let G be a group and H, K subgroups of G. Show that the product set HK is a subgroup of G if and only if KH = HK.
- 2. (a) Let G be a finite abelian group and p be a positive prime divides order of G. Show that G has an element of order p.
 - (b) Prove that any abelian group of order 45 has an element of order 15. Does every abelian group of order 45 have an element of order 9?
- 3. (a) Define prime and irreducible elements in an integral domain. Show that in a Principal Ideal Domain (PID) an element is prime if and only if it is irreducible.
 - (b) Let R be a commutative ring with identity and P be a prime ideal of R. Prove that P[x] is a prime ideal in R[x], where $P[x] = \{a_0 + a_1 \ x + + a_n \ x^n \ ; \ a_i {\in} P \ \text{for} \ i \leq i \leq n, \ n \in IN \}$
- 4. (a) Show that every Euclidean Domain is a Principal Ideal Domain.
 - (b) Let f(x) be a polynomial in $\mathbb{Z}[x]$. If f(x) is reducible over \mathbb{Q} , then show that it is reducible over Z.
- 5. (a) Let A be a matrix over C. Show that row rank of A is same as column rank of A.
 - (b) Let V be a finite dimensional vector space over a field F. Show that if u₁, u₂ are subspaces of V, then $(u_1 + u_2)^0 = u_1^0 \cap u_2^0$.
- 6. (a) Let V be a finite dimensional vector space over a field F and V** be the double dual. Show that V** is isomorphic to V.
 - (b) Show that if for a 2×2 matrix A over a field F, $A^2 = 0$, then for any scalar c, $\det (cI - A) = c^2.$
- 7. (a) Let A be an $n \times n$ matrix over a field F and m(t) be the minimal polynomial of A. Show that the charactersitic polynomial of A divides (m(t))ⁿ.
 - (b) Show that every square matrix is similar to an upper triangular matrix over C.
- 8. (a) Let V be a finite dimensional inner product space and T a linear operator on V. Show that range of T* is the orthogonal complement of the Kernel of T.
 - (b) Let T be a self adjoint operator on a finite dimensional inner product space V. Show that V has an orthonormal basis consisting of characteristic vectors of T.

Con. 6652-12

Paper V: Combinatories Oct. 2012

Scheme A (External) Scheme B (Internal)

(3 Hours) (2 Hours) [Total Marks: 100 [Total Marks: 40

- N.B.: 1) Scheme A students answer any five questions.
 - 2) Scheme B students answer any three questions.
 - 3) All questions carry equal marks.
 - 4) Write on the top of your answer book the scheme under which you are appearing.
- 1. (a) How many positive integers between 100 and 999 both inclusive are not divisible by either 3 or 4?
 - Find the number of 3-element subsets $\{a, b, c\}$ of $\{1, 2, \dots, 2008\}$ such that 3 divides a+b+c. (b)
- 2. (a) Define Stirling number S(n,k) of second kind for $1 \le k \le n$. Show that S(n,1) = 1 = S(n,n) and S(n,k) = S(n-1,k-1) + kS(n-1,k) for $2 \le k \le n-1$.
 - Find the coefficient of $x^5y^4z^3$ in the expansion of $(-2x+y-z)^{12}$.
- 3. (a) Define derangement of finite objects. Let D_n denote the number of derangements of nobjects. Show that
 - 1) $D_n = (n-1)(D_{n-1} + D_{n-2})$ for all $n \ge 2$.
 - 2) $D_n nD_{n-1} = (-1)^n$ for all $n \ge 1$.
 - (b) For each $n \in \mathbb{N}$, show that the number of partitions of n into parts each of which appears at most twice, is equal to the number of partitions of n into parts the sizes of which are not divisible by 3.
- 4. (a) Find number of non-negative integer solutions of the equation x + y + z + w = 10, where $1 \le x \le 5, 2 \le y \le 6, z \le 2, w \le 3.$
 - Show that among any n+1 positive integers not exceeding 2n there must be an integer that divides one of the other integers.
- 5. (a) Define matching in the bipartite graph $G = (X \cup Y, E)$. Show that the bipartite graph $G = (X \cup Y, E)$ has a complete matching if and only if $|J(A)| \geq |A|$ for all $A \subseteq X$, where $J(A) = \{ y \in Y / xy \in E \text{ for some } x \in A \}.$
 - (b) Find the largest number of sets in the family A_1, A_2, \ldots, A_{10} which together have a system of distinct representatives, where $A_1 = \{1, 8, 10, 13\}, A_2 = \{1, 4, 5, 7, 11\}, A_3 = \{5, 8\},\$ $A_4 = \{8, 13\}, A_5 = \{2, 3, 4, 11, 12\}, A_6 = \{5, 6, 10, 13\}, A_7 = \{10, 13\}, A_8 = \{5, 8, 10, 13\},$ $A_9 = \{1, 5, 8\}, A_{10} = \{1, 5, 8, 10, 13\}.$
- 6. (a) Define Euler function $\phi(n)$. Let $n \geq 2$ be an integer whose prime factorization is n = 1 $p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r}$. Show that $\phi(n) = n \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \cdots \left(1 - \frac{1}{p_r}\right)$.
 - (b) How many necklaces can be constructed using three red beads, two white beads and one blue bead?
- 7. (a) Let G be a group of permutations of a non empty finite set X, and let x be any chosen element of X. Then show that $|Gx| \times |G_x| = |G|$ where $Gx = \{g(x)/g \in G\}$ and $G_x = \{g \in G/g(x) = x\}.$
 - (b) Solve the recurrence relation: $a_n = \sum_{k=1}^{n-1} a_k a_{n-k}$, $n \ge 2$ subject to initial value $a_1 = 1$.
- 8. (a) Define expectation and variance of a discrete random variable. Explain geometric random variable and calculate its expectation and variance.
 - (b) What is the probability of the following events when we randomly select a permutation of the 26 lowercase letters of the English alphabet?
 - a) The first 13 letters of the permutations are in alphabetic order.
 - b) a immediately precedes z in the permutations.

Con. 6161-12

16: 2nd half.12-AM(c) Paper II: Analysis - I 17/10/12

Scheme A (External)

(3 Hours)

[Total Marks: 100

Scheme B (Internal / External)]

(2 Hours)

[Total Marks: 40

N.B.: (1) Scheme A students should answer any five questions.

- (2) Scheme B students should answer any three questions.
- (3) All questions carry equal marks.
- (4) Mention clearly the Scheme under which you are appearing.
- 1. (a) For every real x > 0 and every integer n > 0, prove that there is a unique real y > 0such that $y^n = x$.
 - (b) If $x \in IR$, $y \in IR$ and x < y then prove that there exists a rational number q such that x < q < y.
- 2. (a) If { K } is a collection of compact subsets of metric space X such that the intersection of every finite sub-collection of $\{K_{\alpha}\}$ is non-empty, then prove that $\cap K_{\alpha}$ is non-empty.
 - (b) If \overline{E} is the closure of a set E in a metric space X, then prove that diam \overline{E} = diam E.
- 3. (a) If X is a compact metric space and if { p, } is a Cauchy sequence in X, then prove that { p_n } converges to some point of X.
 - (b) Prove that ---

$$\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n = e$$

- 4. (a) If $\sum x_n$ is a series of real numbers which converges absolutely, then prove that every rearrangement of $\sum x_a$ converges and they all converge to the same sum.
 - (b) Discuss the convergence or divergence of the series

$$\frac{1}{1\cdot 3} + \frac{2}{3\cdot 5} + \frac{3}{5\cdot 7} + \frac{4}{7\cdot 9} + \cdots$$

- 5. (a) State and prove the Weierstrass M test.
 - (b) Prove that the series $\sum_{n=1}^{\infty} \frac{1}{n^3 + n^4 x^2}$ converges uniformly for all real x.
- 6. (a) State and prove the test for locating maxima and minima of real valued function with continuous second-order partial derivatives at a stationary point in IR².
 - (b) Divide 24 into three parts such that the continued product of the first, the square of the second and the cube of the third may be maximum.
- 7. (a) Suppose f is a continuous mapping of $[a,b] \subseteq IR$ into IR^n and f is differentiable in (a, b). Prove that there exists x in (a, b) such that

$$||f(b)-f(a)|| \le (b-a)||f'(x)||$$

- (b) Expand $e^{x} \log (1 + y)$ in a Taylor series in the neighbourhood of the point (1, 0).
- 8. (a) State and prove the Fubini's theorem.
 - (b) By differentiating unde www.StudentBounty.com Homework Help & Pastpapers

Student Bounty.com

Paper II: Topology

Oct - 2012

P4-RT-Exam.-Oct.-12-223

Con. 6168-12.

External (Scheme A)]

(3 Hours)

[Total Marks: 100

Internal (Scheme B)]

(2 Hours)

[Total Marks: 40

- N.B.: (1) Scheme A Students answer any five questions.
 - (2) Scheme B Students answer any three questions.
 - (3) All questions carry equal marks.
 - (4) Write the scheme under which you are appearing on top of the answer book.
- 1. (a) Prove that there is no surjective map from a set X onto $P(X) = \{A \mid A \subseteq X\}$.
 - (b) Given two sets X, Y, prove that there is either an injective map from X to Y or there is an injective map from Y to X.
- 2. (a) Let X be a topological space. For a subset A of X, define the closure A. Prove that $\overline{A \cup B} = \overline{A \cup B}$ for two subsets A, B of X.
 - Let X be a topological space and $A \subseteq X$. Prove that $A = \overline{A} \Leftrightarrow A$ is closed in X.
- 3. Define a connected topological space. Prove that a continuous image of a connected 151 topological space is connected.
 - (b) Prove that $IR^2 \setminus \{(0,0)\}$ is a connected topological space.
- (a) Prove that there does not exist a continuous, injective map from $S^T = \{z \in \mathbb{C} | |z| = 1\}$ into IR.
 - (b) Let A be a non-empty subset of IRn.

For any $x \in \mathbb{R}^n$, define $d_A(x) = \inf \{ || x - a || | a \in A \}$.

Prove that $d_A: \mathbb{R}^n \longrightarrow \mathbb{R}$ is a continuous function.

- Define a second countable space. Define a separable space. Prove that a second countable space is seperable.
 - (b) Prove that IRn is a separable space.
- (a) If X, Y are compact topological spaces then prove that X × Y is compact when 6. considered with the product topology.
 - (b) Let $A = \{ X \in \mathbb{Q} \mid 0 \le |x| < \sqrt{2} \}$. Is A a compact subset of \mathbb{Q} ? Justify your answer.
- (a) Let $A \subseteq X$ and $r: X \longrightarrow A$ be a continuous map such that r(a) = a, $\forall a \in A$. Prove 7. that r is a quotient map.
 - (b) Define $f : \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ by $f(x,y) = x, \forall (x,y) \in \mathbb{R} \times \mathbb{R}$. Is f a quotient map? Justify your
- Define path homotopy. If $f: X \longrightarrow Y$ is a continuous map with $f(x_0) = y_0$, then prove 8. (a) that f induces a group homomorphism from $\pi_1(X, x_0)$ into $\pi_1(Y, y_0)$.
 - (b) Prove that $f(z) = z^2$, $\forall z \in S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$ is a covering map from S^1 onto S^1 .