Detailed Solutions A- 09

JUNE 2003

Q1. a. C The pole locations are mirror image symmetric to location of the zeros. Therefore it is an all-pass filter.
b. $\quad \mathrm{C} \quad$ The outputs of the first level NAND gates are $\overline{A B}$ and $\overline{B C}$. The output of the first OR gate is $\overline{A B}+\overline{B C}$.
Thus, the output $Y=\bar{A}+\overline{A B}+\overline{B C}+\bar{C}$.
c. B FFFF is a negative 2's complement number. To obtain its magnitude, complement it and add 1 to obtain hexadecimal 0001 which is equal to decimal 1.
d. A The output of the counter stabilizes after the effect of an input pulse has rippled through all 10 flipflops of the counter, which requires a time equal to 10 T , where T is propagation delay time of one flipflop. Now, $10 \mathrm{~T}<10^{-6}$, and therefore $\mathrm{T}<10^{-7} \mathrm{~s}$.
e.

A
By virtual ground the voltage at the -ve terminals of the two Op Amps are 1 V and 2 V respectively. Let the output voltage of the first Op Amp be V_{a}. Then, KCL at the -ve terminal of first OpAmp gives

$$
\frac{0-1}{2 K}+\frac{V_{a}-1}{2 K}+\frac{2-1}{2 K}=0, \text { or } V_{a}=0 V .
$$

Also, KCL at the -ve terminal of second Op Amp gives

$$
\frac{0-2}{2 K}+\frac{1-2}{1 K}+\frac{V_{o}-2}{1 K}=0, \text { or } V_{o}=8 \mathrm{~V} .
$$

f. $\quad \mathrm{C}$
g. C Refer to p .360 [2].
h. D Refer Section 7.15 [2]

PART I

Q2. a. By virtual ground the voltage at the -ve terminals of the two OpAmps are $\frac{V_{o}}{8}$ and 1 V respectively. Assume that V_{a} is the voltage at output of the first OpAmp Then, KCL at the -ve terminal of first OpAmp gives

$$
\frac{1-\frac{V_{o}}{8}}{1 K}+\frac{V_{a}-\frac{V_{o}}{8}}{2 K}=0, \text { or } V_{a}=\frac{3 V_{o}}{8}-1 .
$$

KCL at the -ve terminal of second OpAmp gives

$$
\frac{V_{o}-1}{8 K}+\frac{V_{a}-1}{4 K}=0, \text { or } V_{a}=\frac{3-V_{o}}{2} .
$$

Eliminating V_{a} from the two equations, $V_{o}=\frac{20}{7}$ volts.
b. For compensation, refer Section 14.8 [2].
c. For Sawtooth generation, refer Section 15.13 [2].

Q3. Refer Sections16.2, 16.13, 16.14 [2].
Q4.a. By virtual ground the -ve terminal of the OpAmp is at virtual ground. Therefore, the current drawn by the T-network composed of $\mathrm{R}, 2 \mathrm{C}, \mathrm{R}$ (call it T1) is

$$
I_{a}=\left[\frac{V_{a}}{R}\right] /\left[1+\frac{1}{1+2 s C R}\right]=\frac{V_{a}(1+2 s C R)}{2+2 s C R} .
$$

The current going out of T1 towards -ve terminal of the OpAmp is

$$
I_{1}=I_{a} /[1+2 s C R]=\frac{V_{a}}{2+2 s C R} .
$$

Similarly, the current going towards -ve terminal of the OpAmp from the second T-network can be written as

$$
I_{2}=\frac{R s^{2} C^{2} V_{a}}{2+2 s C R}
$$

Applying KCL at -ve terminal of the OpAmp gives $I_{1}+I_{2}=0$. Simplifying this identity gives the desired result.
b. The node equations at nodes P and Q in the figure shown will be

$$
\frac{V_{i}-V_{p}}{R_{1}}=\frac{V_{p}}{R_{2}}+\left(V_{p}-V_{o}\right) s C+V_{p} s C \quad \text { and } \quad V_{p} s C=\frac{-V_{o}}{R_{3}}
$$

Eliminating V_{p} and letting $R^{\prime}=R_{1} \| R_{2}$, gives the transfer function as

$$
\begin{equation*}
\frac{V_{o}}{V_{a}}=\frac{\left(1 / R_{1} C\right) s}{s^{2}+\left(2 / R_{3} C\right) s+\left(1 / R^{\prime} R_{3} C^{2}\right)} \tag{4b.1}
\end{equation*}
$$

A standard bandpass filter transfer function can be written as

$$
\begin{equation*}
\frac{V_{o}}{V_{a}}=\frac{A_{0}\left(\omega_{0} / Q\right) s}{s^{2}+\left(\omega_{0} / Q\right)^{2}+\omega_{0}^{2}}, \tag{4b.2}
\end{equation*}
$$

where A_{0} is the midband gain. Equating the corresponding coefficients gives

$$
R_{1}=\frac{Q}{-A_{0} \omega_{0} C}, \quad R_{3}=\frac{2 Q}{\omega_{0} C}, \quad R^{\prime}=\frac{1}{\omega_{0}^{2} R_{3} C^{2}}
$$

From the data given, $\omega_{0}=4000 \pi, A_{0}=20, Q=\frac{40}{3}$. Choosing $C=10^{-7} \mathrm{~F}$, gives

$$
R_{1}=\frac{10^{4}}{6 \pi}, \quad R_{3}=\frac{10^{6}}{15 \pi}, \quad R_{2}=\frac{R_{1} R^{\prime}}{R_{1}-R^{\prime}}=\frac{1}{0.3994 \pi}
$$

Q5.a. For Dual-slope converters, refer to Section 16.5 [2].
b. Resolution $=\frac{12}{2^{12}}=\frac{12}{4096}$ volts, Weightage of $\mathrm{MSB}=2^{11}$, and

Input voltage corresponding to all 1 's at the output $=12\left(1-2^{-12}\right) \approx 11.997$ volts.
Q6.a. The gain of the RC network of the given oscillator circuit can be obtained as

$$
\operatorname{Gain}(s)=\frac{R}{3 R+\left(\frac{1}{s C}+R^{2} s C\right)}
$$

Thus, the loop gain of the oscillator is

$$
L G(s)=\left(1+\frac{R^{\prime}}{R}\right) \operatorname{Gain}(s)=\frac{R\left(1+\frac{R^{\prime}}{R}\right)}{3 R+\left(\frac{1}{s C}+R^{2} s C\right)}
$$

At the frequency of oscillation $\omega_{0}, L G\left(j \omega_{0}\right)=1 \angle 0^{\circ}$, which gives

$$
\omega_{0}=\frac{1}{R C} \quad \text { and } \quad \frac{R\left(1+\frac{R^{\prime}}{R}\right)}{3 R}=1 \text { or } R^{\prime}=2 R
$$

b. Refer to Section 8.8 [3] for derivation of the propagation delay time given by

$$
t_{P H L}=\frac{C_{\text {load }}}{k_{N}}\left[\frac{V_{D D}-V_{G S}+V_{T}}{\left(V_{G S}+V_{T}\right)^{2}}+\frac{1.15}{\left(V_{G S}+V_{T}\right)}\right]
$$

Substituting the values from given data gives $t_{P H L}=0.175 \mu \mathrm{~s}$.

PART II

Q7.a. From the description of the problem

$$
F(A, B, C, D)=\sum 0,2,5,6,13,14+\sum_{\phi} 8,9
$$

The K-map for $F(A, B, C, D)$ can be written as

Combining the terms gives the minimized function as

$$
F(A, B, C, D)=\bar{A} \bar{B} \bar{D}+B \bar{C} D+B C \bar{D}
$$

which can be realized using four 3 - input NAND gates as

b. From the figure of the counter, the required table can be written as

PS				NS								
Q_{0}	Q_{1}	Q_{2}	Q_{0}	Q_{1}	Q_{2}	$\mathrm{~J}_{0}$	$\mathrm{~K}_{0}$	J_{1}	$\mathrm{~K}_{1}$	J_{2}	$\mathrm{~K}_{2}$	
0	0	0	1	0	0	1	1	0	1	0	0	
1	0	0	0	1	0	1	1	1	1	0	0	
0	1	0	0	0	1	0	1	0	1	1	1	
0	0	1	1	0	1	1	1	0	1	0	0	
1	0	1	0	1	1	1	1	1	1	0	0	
0	1	1	0	0	0	0	1	1	1	1	1	

From the table, the modulus of the counter is 6 .
Q8.a. The full adder functions can be written as

$$
\begin{aligned}
& \text { Sum }=A \oplus B \oplus C_{\text {in }}=A \bar{B} \overline{C_{i n}}+\bar{A} B \overline{C_{i n}}+A B C_{i n}+\bar{A} \bar{B} C_{\text {in }} \\
& C_{\text {out }}=A B+B C_{\text {in }}+C_{\text {in }} A
\end{aligned}
$$

which can be realized with two 4-1 multiplexers as shown below. The inputs to the multiplexers are the residues of the two functions. For example, when $B=A=0$, the residues are $S u m=C_{\text {in }}$ and $C_{\text {out }}=0$.

Q8.b. To implement F_{1}, F_{2}, F_{3} using a ROM requires the ROM to have three outputs. Since the functions are of four variables, the ROM is required to have $2^{4}=16$ Locations. Thus, the size of the ROM is 16×3. The data in the ROM is as per the Truth-table of the functions as shown below, where x means 0 or 1 .

Q9.a. Assuming that the input impedance of the CMOS gate is infinite and that the gate delays are zero, the waveforms at various points in the given monostable circuit are as given below with V_{1} as the waveform at the output of first NOR gate.

A sudden change in V_{0} is transferred to the resistance R. The capacitor C discharges till V_{R} equals the threshold voltage of the driver transistor of the NOR gate (assume it to be $\left.0.5 V_{\mathrm{DD}}\right)$. At this time, V_{1} suddenly switches to V_{DD} and V_{0} to zero. This change is also transferred to R and the capacitor then charges asymptotically to zero. Thus, during the time when $V_{0}=V_{D D}($ logic 1),

$$
V_{R}=V_{D D}\left(1-e^{-t / R C}\right)
$$

where $R C=\left(50 \times 10^{3}\right) \times\left(0.01 \times 10^{-6}\right)=5 \times 10^{-6} \mathrm{~s}$. The time period T of the output pulse will end when $V_{R}=0.5 V_{D D}$. For this condition, T can be evaluated as $7.2 \times 10^{-6} \mathrm{~s}$.
b. The truth-table and the excitation table of the flipflop are as given below

X	Y	Q_{n+1}
0	0	$\overline{Q_{n}}$
0	1	1
1	0	0
1	1	Q_{n}

Exc.	X	Y
$0 \rightarrow 0$	1	x
$0 \rightarrow 1$	0	\times
$1 \rightarrow 0$	x	0
$1 \rightarrow 1$	\times	1

To convert a $J K$ flipflop to $X Y$ flipflop, one needs to design a logic whose inputs are X, Y and Q, and whose outputs are J and K inputs of the $J K$ flipflop as shown

The truth table for this logic can be written as

X	Y	Q_{n}	Q_{n+1}	J	K
0	0	0	1	1	1
0	0	1	0	1	1
0	1	0	1	1	0
0	1	1	1	1	0

X	Y	Q_{n}	Q_{n+1}	J	K
1	0	0	0	0	1
1	0	1	0	0	1
1	1	0	0	0	0
1	1	1	1	0	0

From this table, $J=\bar{X}$ and $K=\bar{Y}$.
Q10.a. For 4-bit 2's complement adder/subtracter, refer to Sections 7.2, 7.3 [2].
b. For a TTL to CMOS interface, refer to Section 8.12 [3] and for a TTL to ECL interface, refer to Section7.12 [3]

Q11. (i) For PLA, refer to Section 7.15 [2].
(ii) For CCD, refer to Section 9.7 [2].
(iii) For Shottky diode as a switch, refer to 1.12 [3].
(iv) For IC power amplifiers, refer to Section 14.8 [1].
(v) For Parity Check Generator, refer to Section 7.5 [2].
(vi) For Switched mode power supply, refer to Section 17.7 [2].

DETAILED SOLUTIONS A-09

DEC2003

Q1.a.
D The OpAmp is working as a comparator and its negative terminal is at a higher potential than the positive terminal. Therefore, the output will saturates to -18 volts, approximately.
b.

B The equivalent resistance is equal to $\frac{1}{f C}$ where $f=10 \mathrm{KHz}$ and $C=1.5 \mu F$.
c. B $\quad 7 \times 10^{6}$ bytes $=7 \times 8 \times 10^{6}$ bits.
d. D The binary number $01101100=108$ (decimal) corresponds to input voltage of 2.16 volts. It is the highest level smaller than 2.17 volts.
e.

A If T-input is at logic 1, the output waveform has a period twice as that of the input waveform.
f. A MOS Opamps have better linearity and better noise performance.
g. A The transfer function $H(s)$ of an RC highpass filter is $H(s)=\frac{s}{s+1 / R C}$, which is proportional to s if $\frac{1}{R C} \gg f$.
h. D Apply Demorgan's theorem once to write the give expression as $A \bar{B} C D$. Apply Demorgan's theorem once more to get the result.

PART I

Q2. a. For biquadratic transfer functions, refer to Table 12.16 [1]
b. With finite gain A, the negative input terminal of the Opamp will be at $\left(V_{o} / A\right)$. KCL at this terminal can be written as

$$
\frac{V_{i n}-\frac{V_{o}}{A}}{R_{1}+1 / s C_{0}}=\frac{\frac{V_{o}}{A}-V_{o}}{R_{2}} \text {, or } V_{i n} R_{2}=V_{o}\left[\frac{1}{A}\left(R_{2}+R_{1}+\frac{1}{s C_{0}}\right)+\left(R_{1}+\frac{1}{s C_{0}}\right)\right]
$$

Substituting for $A=\left(\frac{A_{0} \omega_{p}}{s}\right)$ and simplifying gives the bandpass transfer function as

$$
\frac{V_{o}}{V_{i n}}=\frac{s R_{2}\left(A_{0} \omega_{p}\right)}{s^{2}+s\left[A_{0} \omega_{p} R_{1}+\frac{1}{C_{0}}\right]+\frac{A_{0} \omega_{p}}{C_{0}}}
$$

Q3.a. The figure below shows the circuit of noninverting amplifier. The Opamp has an input impedance of $R_{i n}$ and the current flowing through it develops a small voltage V with the polarity shown in the figure. The KCL equation at negative terminal of Opamp can be written as

$$
\frac{V_{s}-V}{R_{1}}+\frac{V_{s}-V-V_{0}}{R_{2}}=\frac{V}{R_{i n}}=I_{i n}
$$

This can be simplified to

$$
\frac{V_{s}}{I_{i n}}=\left(\frac{V_{0}}{R_{2} I_{i n}}+1\right)\left(R_{1}| | R_{2}\right)+R_{\text {in }}
$$

In a noninverting amplifier V_{o} is positive if V_{s} is positive. Thus, the input impedance as seen by the positive terminal of Opamp is greater than $R_{\text {in }}$, the impedance of the open loop amplifier.
b. For analog multipliers, refer to Sections 16.13, 16.14 [2].

Q4.a. For details of the given logarithmic amplifier, refer to Section 16.13 [2]. The conditions are required for the circuit to be a logarithmic amplifier are:
(i) $\quad Q_{1}$ and Q_{2} should be matched transistors.
(ii) The transistors should be biased such that $v_{B E 1}=V_{T} \ln i_{C 1}$ and

$$
v_{B E 2}=V_{T} \ln i_{C 2} .
$$

(iii) The base voltage of Q_{2} be very small compared to $V_{\text {REF }}$.
b. For Sample and Hold circuits, refer to Section 16.2 [2].

Q5.a. For transistor Switching times, refer to Section 3.8 [2].
b. For Gilbert multiplier, refer to Section 16.14 [2].

Q6. (i) For Slew rate of Opamps, refer to Section 2.6 [1].
(ii) For Dual Slope ADC, refer to Section 16.5 [2].
(iii) For Instrumentation Amplifier, refer to Section 2.4 [1].
(iv) For Multiple Opamp Biquad, refer to Section 12.7 [1].

PART II

Q7.a. For Transfer Characteristics of TTL, refer to Sections 6.5, 6.6, 6.7 [3].
b. For TTL-CMOS interfacing, refer to Section 8.12 [3].

Q8.a. A simple PLA implementation of the given functions is shown in figure below.

b. For PROM, refer to Section 11.6 [1]. For PAL and PLA, refer to Sections 7.14 and 7.15 [2].

Q9.a. For rule of CMOS gate formation, refer to Section 10.3 [1]. Using this rule, the following circuit for the given function results.

b. A circuit for a 3-digit display using using only one decoder is shown below. The data to be displayed by the three displays comes in to the display decoder serially. The displays are also turned ON serially (one at a time) by mutually exclusive waveforms applied to the displays as shown in the figure. Thus, a single BCD to 7 -segment decoder can be multiplexed to turn ON the three displays.

Q10.a. For description of a comparator circuit, refer to Section 7.4 [2].
b. The Boolean functions describing a full adder having A, B and C as inputs, are given as

$$
\begin{aligned}
& \text { Sum }=A \oplus B \oplus C \\
& C_{\text {out }}=A B+B C+C A
\end{aligned}
$$

The implementation using two 4:1 multiplexers is shown in the figure.

Q11. (i) For comparison between TTL and ECL, refer to Section 7.1 [3].
(ii) For Shift Registers, refer to Section 8.5 [2].
(iii) For Memory Organization, refer to Sections 12.16,12.17 [3].
(iv) For Synchronous and Asynchronous counters, refer to Sections 8.6,8.7 [2].

Detailed Solution A-09 June 2004

Q1.a
D \quad The output V_{o} is equal to V_{+}(the voltage at the positive terminal of the OpAmp) for both $\omega=0$ (both capacitors are open circuit) and $\omega=\infty$ (both capacitors are short circuit). This is not possible for LPF or HPF or BPF .
b.

C The transfer function of the integrator is $\frac{V_{o}}{V_{i}}=\frac{\left(R_{2} / R_{1}\right)}{s C R_{2}+1}$. Its Bode plot has a corner frequency at $100 \mathrm{rad} / \mathrm{s}$ or 16 Hz . Thus limiting frequency should be ten times $16 \mathrm{~Hz}=160 \mathrm{~Hz}$.
d. $\quad \mathrm{A} \quad$ Refer to Section 12.7 [1]
d.

From the figure, slew rate $=\frac{3-(-3)}{0.25 \times 10^{-6}}=24$ volts $/ \mu \mathrm{s}$.
e. $\quad B \quad$ Transistor D is in series with parallel combination of transistors A, B and C. Thus, the result.
f. B After 16 pulses the counter will come back to the state it started with (1001). Another 7 pulses will take it to 0000.
h. $\quad \mathrm{D} \quad$ Refer to Section 4.3 [3].
h. B The time taken for the input pulse to ripple through all the N flipflops will be 12 N nsec. Thus, the maximum speed of operation of the counter is $1 /\left(12 \times 10^{-9} \mathrm{~N}\right)$.

$$
\frac{1}{12 \times 10^{-9} N} \geq 10 \times 10^{6}
$$

or $N=8$. Therefore modulo count is $2^{N}=256$.

PART I

Q2. a. Refer to Sections 2.1, 2.2 [1].
Gain at corner frequency is equal to Open loop gain (in dB) - 3dB. If the open loop gain is 10^{5}, then gain at corner frequency $=20 \log _{10} 10^{5}-3=97 \mathrm{~dB}$.
b. Compensating capacitor avoids oscillations in an amplifier by reducing its gain at a frequency at which the phase shift is 180°. Such compensating capacitor introduces an additional pole at a frequency much lower than the frequencies of the natural poles of the amplifier. As such, the gain of the amplifier drops to unity at a smaller frequency.
If the slew rate is $1 V / \mu s$, the smallest duration in which the output can change by 10 V is $10 \mu \mathrm{~s}$.
Maximum frequency of sine wave $=\frac{\text { slew rate }}{2 \pi V_{\max }}=\frac{10^{6}}{2 \pi 10}=15915 \mathrm{~Hz}$
c. For 10 degree change in temperature, the offset voltage will be $300 \mu V$ while the
offset current will be $3 n A$. Thus, the Op-Amp inverter with input voltage, offset voltage and offset current is as shown in the figure below. The output voltage is obtained by writing KCL at the inverting terminal as

$$
\frac{V_{o}-0.3 m V}{100 K}+\frac{V_{i}-0.3 m V}{1 K}=3 n A .
$$

Thus, $V_{o}=70.6 \mathrm{mV}$ and the error $=29.4 \mathrm{mV}$.

Q3.a. For two-stage CMOS Op-Amp, refer to Section 9.1 [1].
c. For instrumentation amplifier, refer to Example 2.4 [1].

Q4. For details on Butterworth and Chebyshev filters, refer to Section12.3 [1].
With reference to the figure shown, the ripple factor ε can be evaluated from

$$
\alpha_{\max }=10 \log _{10}\left(1+\varepsilon^{2}\right)
$$

Thus, $\mathcal{E}=\sqrt{10^{\left(\alpha_{\max } / 10\right)}-1}=\sqrt{10^{0.05}-1}=0.122$. The order $N_{C H}$ of the Chebyshev filter can be obtained from the following equation, with $A=10^{\left(\alpha_{\text {min }} / 20\right)}$, as
$N_{C H}=\frac{\cosh ^{-1}\left[\sqrt{A^{2}-1} / \varepsilon\right]}{\cosh ^{-1}\left[\Omega_{S} / \Omega_{P}\right]}=\frac{\cosh ^{-1}[\sqrt{31.6228-1} / 0.122]}{\cosh ^{-1}[2]}=3.4$
The order must be an integer. Thus $N_{C H}=4$. Similarly, the order $N_{B W}$ of the Butterworth filter having same specifications can be obtained from the following equation as
$N_{C H}=\frac{\log _{10}\left[\sqrt{A^{2}-1} / \varepsilon\right]}{\log _{10}\left[\Omega_{S} / \Omega_{P}\right]}=\frac{\log _{10}[\sqrt{31.6228-1} / 0.122]}{\log _{10}[2]}=5.5$,
or $N_{B W}=6$, which is 2 higher than the order used for Chebyshev filter.

Q5.a. The flash analog to digital converter is the fastest conversion method. A 4-bit flash converter uses $2^{4}-1=15$ comparators. The analog input V_{a} is applied to the positive terminal of each comparator. The negative terminal of the comparators is supplied with equally spaced reference voltages obtained from a potential divider network consisting of $2^{4}=161 \mathrm{~K}$ resistances as shown in the figure below. This arrangement sorts the analog input in a range between two adjacent reference voltages. The outputs of the comparators are fed to a priority encoder to obtain the binary output. The required fifteen reference voltages are $\frac{10}{16}, \frac{20}{16}, \frac{30}{16}, \ldots \ldots ., \frac{150}{16}$.

www.StudentBounty.com
Homework Help \& Pastpapers

The logic for the priority encoder can be obtained as per the following truth table.
If time taken for comparison is 50 ns and that for priority encoder is 35 ns , then total time for conversion is 85 ns . Thus, the maximum possible conversion rate is $\frac{1}{85 \mathrm{~ns}}=11.8 \mathrm{MHz}$.
The output $Y_{3} Y_{2} Y_{1} Y_{0}$ for inputs $0 \mathrm{~V}, 5.1 \mathrm{~V}$ and 10 V will be, respectively, 0000,1010 and 1111.
b. For IC power amplifiers, refer to Section 14.8 [1]

Q6. For TTL, refer to Sections 6.5, 6.6, 6.7, 6.10 [3].
Q7.a. The truth table for $B C D$ to Excess-3 code is shown in the truth table given below.

ROM Address					ROM Outputs			
W_{4}	$\mathrm{~W}_{3}$	$\mathrm{~W}_{2}$	$\mathrm{~W}_{1}$	Y_{3}	Y_{2}	Y_{1}	Y_{0}	
0	0	0	0	0	0	0	0	
0	0	0	1	0	0	0	1	
0	0	1	0	0	0	1	0	
0	0	1	1	0	0	1	1	
0	1	0	0	0	1	0	0	
0	1	0	1	0	1	0	1	
0	1	1	0	0	1	1	0	
0	1	1	1	0	1	1	1	
1	0	0	0	1	0	0	0	
1	0	0	1	1	0	0	1	

The table also shows the excess-3 outputs of the ROM for different BCD inputs given as ROM address. The data stored in the ROM for remaining inputs is don't care.
b. For truth table of Gray to binary converter, refer to Section 7.9 [2]. The corresponding Boolean functions can be obtained from this table as
$Y_{3}=W_{3}$

$$
Y_{1}=Y_{2} \oplus W_{1}
$$

$$
\begin{aligned}
& Y_{2}=Y_{3} \oplus W_{2} \\
& Y_{0}=Y_{1} \oplus W_{0}
\end{aligned}
$$

which can be easily implemented using Ex-OR gates.
Q8a. The residues of the given Boolean function for various combinations of B, C and D are shown in the following truth table, which can be implemented by an 8:1 MUX as shown in the figure

b. The state diagram for the problem and the state table along with D inputs of the two flipflops are as shown below.

PS		NS				D_{1}		
D_{0}								
$\mathrm{Q}_{1} \mathrm{Q}_{0}$	$X=0$	$X=1$	0	1	0	1		
0	0	0	1	1	0	0	1	1
0	1	0	0	1	0	0	0	1
1	0	0	0	1	0	0	0	1

From the table, $D_{1}=\overline{Q_{1}} \overline{Q_{0}} X$ and $D_{0}=\bar{X}$. The circuit is as given below.

Q9.a. The given circuit is a modulo-6 twisted ring (Johnson) counter, whose outputs Q_{0}, Q_{1}, Q_{2} are fed to an inverting summer amplifier. Count sequence of the counter is $000,100,110,111,011,001$. Therefore, the output of the Opamp will be a repeating sequence $0 \mathrm{~V},-1 \mathrm{~V},-2 \mathrm{~V},-3 \mathrm{~V},-2 \mathrm{~V},-1 \mathrm{~V}$ changing at every falling edge of the clock. as shown in the figure.

b. (i) 10
(ii) $\quad(5 / 1024) \mathrm{MHz}$, assuming a ripple counter.
(iii) 1024
(iv) 2060=1024+1024+12. Hence, counter will hold 12.
(v) Yes, in case of a ripple counter. In a synchronous counter, the clock is applied simultaneously to all flipflops and thus, the maximum frequency of operation does not depend on the modulus of the counter.

Q10.a. A $21 / 2 \mathrm{D}$ organized 16 X 1 memory is using two $2-4$ decoders is shown in the figure below.
b. For programmable arrays, refer to Sections 7.14, 7.15 [2].
c.

Q11. (i) For sequence generators, refer to Section 10.17 [3].
(ii) For Single Amplifier Biquad, refer to Section 16.10[2].
(iii) For analog multipliers, refer to Sections 16.13, 16.14 [2]
(iv) For Switched Capacitor Filters, refer to Section 16.12 [2].

DETAILED SOLUTIONS A-09 DEC 2004

Q1. a. B Refer to Section 16.9 [2]. The correct answer is B with $2 \mathrm{~N}-1$ instaed of N -1
b. C By virtual ground, the input terminals of the Opamp are at same potential thus making resistances R_{1} in series.
c. C The capacitors are open circuit at dc and the voltage at the inverting terminal of Opamp is the same as that at the noninverting terminal (equal to 0.5 V). Since no current flows feedback resistances, the output voltage is also equal to 0.5 V .
d. A The function can be expanded as

$$
f=\bar{A} \bar{B} C \bar{D}+\bar{A} \bar{B} C D+\bar{A} B C \bar{D}+A B C \bar{D}+A \bar{B} \bar{C} D+A B \bar{C} D
$$

e. D A T flipflop divides the frequency of the input clock by 2 and its output is a square wave.
f. D When inputs are 00, both outputs are 1 . Switching the input to 11 makes one of the outputs race to 0 .
g. B Because there is a feedback.
h. C The load in a MOS differential amplifier is very large, often a current source.

PART I

Q2.a. With Opamp replaced by its equivalent circuit, the given amplifier can be drawn as shown in the figure where $V_{i}=-2.1 \mathrm{~V}$. The node equations at negative and positive terminals of the Opamp may be respectively written as

$$
\frac{V_{-}-V_{A}}{1 K}+\frac{V_{-}-A V}{11 K}-\frac{V}{1 M}=0 \quad \text { and } \quad \frac{V_{B}-V_{+}}{1 K}=\frac{V}{1 M}+\frac{V_{+}}{11 K}
$$

where $V=V_{+}-V_{-}$and $A=10^{5}$. Solving these equations with $V_{B}-V_{A}=2.1 V$ giv $V=0.231 \mathrm{mV}$.
b. Same figure can be used to obtain the gain. Neglecting current through 1M input impedance of the Opamp, the node equations can be written as
$\frac{V_{A}-V_{-}}{1 K}=\frac{V_{-}-A V}{11 K} \quad$ and $\quad \frac{V_{B}-V_{+}}{1 K}=\frac{V_{+}}{11 K}$
Which give $A V=11\left(V_{B}-V_{A}\right)$. Further, the following equations may be written for currents through the three 1 K resistances.
$V_{A}-V_{-}=V_{+}-V_{B}=V_{o}-A V$
These two equations can be solved to get $2 V_{o}=2 A V-\left(V_{B}-V_{A}\right)$. Substituting for $A V$ gives $V_{o}=10.5\left(V_{B}-V_{A}\right)$. Thus, the gain is 10.5.
c. Same figure can be used to obtain the gain. Writing KVL for the loop containing the source, we get
$\frac{V_{B}-V_{S}-V_{A}}{R_{S}}+\frac{V_{B}-V-V_{A}}{2 K}=0 \quad$ or $\quad V_{B}-V_{A}=\frac{V_{S}}{3}+\frac{V}{3} \cong \frac{V_{S}}{3}$
where V_{S} is the source voltage and $R_{S}=1 K$ is the source resistance. Using the result of Q2c gives

$$
V_{o}=10.5\left(V_{B}-V_{A}\right)=10.5 \frac{V_{S}}{3} .
$$

Thus, the gain is 3.5 .
Q3. (i) The poles and zeros of $\mathrm{H}(\mathrm{s})$ are respectively given by $s_{p}=\frac{-a \pm \sqrt{b^{2}-4 a c}}{2}$ and $s_{z}=\frac{a \pm \sqrt{b^{2}-4 a c}}{2}$

\star Ims		
\mathbf{x}	0	
-a	a	\rightarrow Res
x	0	

Thus, the poles are at mirror image locations of the zeros as shown in the figure.
(ii) The magnitude of this allpass filter is K . For plots of magnitude and phase, refer to p .1105 [1].
(iii) For passive realization, refer to Section 12.5.7 [1].
(iv) With $a=\frac{\omega_{0}}{Q}, b=\omega_{0}^{2}, H(s)$ can be written as
$H(s)=\frac{Y(s)}{X(s)}=K-\frac{K 2\left(\omega_{0} / Q\right) s}{s^{2}+\left(\omega_{0} / Q\right) s+\omega_{0}^{2}}$
Or, $\quad Y(s)=-\left(\omega_{0} / s\right)[2 X(s)+Y(s)] \frac{1}{Q}-\frac{\omega_{0}^{2}}{s^{2}} Y(s)$
which can be realized as shown in the figure below.

Q4. For a description of Dual slope converter and derivation of expressions, refer to Section 16.5 [2].
(i) Time required for the out put to reach its maximum value is same as the time required by the counter to reach its maximum count of 2^{12}. For a clock of 1 MHz , this is equal to $\frac{2^{12}}{10^{6}}=4.096 \mathrm{~ms}=t_{1}$.
(ii) For a 5 V input, $t_{2}=t_{1} \frac{V_{\text {in }}}{\left|V_{\text {ref }}\right|}=2.048 \mathrm{~ms}$. Thus, conversion time is equal to $t 1+t 2=6.144 \mathrm{~ms}$.

Q5.a. For electron density distribution and explanation, refer to Section 1.20 [3].
b. For diode switching, refer to Section 1.18 [3]

Q6. (i) For DC level shifting, refer to Section 14.4 [2].
(ii) For Sample and Hold circuits, refer to Section 16.2 [2].
(iii) For Sensitivity of a Biquad, refer to Section 12.9 [1].
(iv) For MOS Opamps, refer to Section 14.13[2].

PART II

Q7.a. Assuming Q to be in active region, base current of $Q=I / 100=2.5 \times 10^{-5} \mathrm{~A}$. Thus, $V=5-I_{B} 1.4 K-V_{B E}-V_{D}=3.25 \mathrm{~V}$. It is easily seen that the collector voltage is $5-I_{C} R_{C}=5-0.25=4.75 \mathrm{~V}$. and the base voltage is $3.25+0.7+0.7=4.65 \mathrm{~V}$. Thus, $V_{B C}=-0.1 \mathrm{~V}$ indicating that Q is indeed in active region.
b. A trivial solution is when $V_{i}<2$ volts and $V_{o}=12$ volts.

Assume both transistors are in saturation. Then
$k_{p}\left(12-V_{i}-V_{T}\right)^{2}=k_{n}\left(V_{i}-V_{T}\right)^{2}$
Solving with $k_{p}=k_{n}$ and $V_{T}=2$ volts, gives $V_{i}=6$ volts.
PMOS will be in saturation if $V_{o}-V_{i}<V_{T}$, or $V_{o}<8$ volts. Also, NMOS will be in saturation if $V_{i}-V_{0}<V_{T}$, or $V_{o}>4$ volts. The range when both transistors are in saturation is $4<V_{o}<8$.

Q8.a. It is easily seen that for AB equal to $00,01,10,11$, the output of multiplexer will $0,1,1,1$, respectively. Thus $f=A+B$.
b. The required table is shown below

A	B	C	D	E	O_{0}	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}	O_{6}	O_{7}
x	x	x	0	x	0	0	0	0	0	0	0	0
x	x	x	0	x	0	0	0	0	0	0	0	0
0	0	0	0	1	1	0	0	0	0	0	0	0
0	0	1	0	1		0	1	0	0	0	0	0
0	1	0	0	1		0	0	1	0	0	0	0
0	0											
0	1	1	0	1		0	0	0	1	0	0	0
1	0	0	0	1	0	0	0	0	1	0	0	0
1	0	1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	1	0	0	0	0	0	0	1	0
1	1	1	0	1	0	0	0	0	0	0	0	1

Q9.a. For an explanation of Master-Slave JK flipflop and its advantages, refer to Section 8.4 [2]. A NAND flipflop will take 2 gate delays to stabilize the output after the inuts are applied. Thus, both Master and Slave sections of the flipflop require 3 gate delays. Add 1 gate delay for the gate used for complementing the clock. Thus the delay required after the positive edge of the clock is 4 gate delays or 20 ns .
b. A sequence generator is a shift register whose first flipflop gets its D-input from the present state of the shift register through a combinational logic as shown in the figure below. The output of a flipflop in this circuit is a delayed version of its predecessor flipflop. This makes the truth table of the logic block as shown below. From the truth table the Boolean function for the sequence generator can be found to be $D=Q_{0} \oplus Q_{2}$.

Q_{0}	Q_{1}	Q_{2}	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Q10.a. For description of given circuit, refer to Section 11.4 [1].
b. For static RAM Cell, refer to Section 9.5 [2].
c. The following table derives the operational sequence of the counter, assuming $\mathrm{K}_{2}=1$ and $\mathrm{J}_{2}=\mathrm{Q}_{0}$.

$\begin{aligned} & \text { PS } \\ & Q_{0} Q_{1} Q_{2} \end{aligned}$			$J_{0} \mathrm{~K}_{0} \mathrm{~J}_{1} \mathrm{~K}_{1} \mathrm{~J}_{2} \mathrm{~K}_{2}$				$\begin{array}{ll} \mathrm{NS} \\ \mathrm{Q}_{0} \mathrm{Q}_{1} & \\ Q_{2} \end{array}$		
Q_{0}	${ }_{0}$	0	1	1	0		Q_{0}	1	Q
1	1	0	1	1	1		0	0	1
0	0	1	0	1	0		0	1	0
0	1	0	1	1	0		1	0	0
1	0	0	1	1	1		0	1	1
0	1	1	0	1	0		0	0	0

Thus, it is a mod-6 counter.
Q11. (i) For Emitter-coupled OR gate, refer to Section 7.2 [3].
(ii) For CMOS logic gates, refer to Section 10.3 [1].
(iii) For BJT inverter, refer to Section 6.10 [2].
(iv) For Schottky diode, refer to Section 1.19 [3]

