
DC14 System Software and Operating System

 1

 TYPICAL QUESTIONS & ANSWERS

PART - I

OBJECTIVE TYPE QUESTIONS

Each Question carries 2 marks.

Choose correct or the best alternative in the following:

Q.1 Translator for low level programming language were termed as
 (A) Assembler (B) Compiler
 (C) Linker (D) Loader

 Ans: (A)

Q.2 Analysis which determines the meaning of a statement once its grammatical structure
becomes known is termed as

 (A) Semantic analysis (B) Syntax analysis
 (C) Regular analysis (D) General analysis

 Ans: (A)

Q.3 Load address for the first word of the program is called
 (A) Linker address origin (B) load address origin

 (C) Phase library (D) absolute library

 Ans: (B)

Q.4 Symbolic names can be associated with

 (A) Information (B) data or instruction

 (C) operand (D) mnemonic operation

 Ans: (B)

Q.5 The translator which perform macro expansion is called a
 (A) Macro processor (B) Macro pre-processor
 (C) Micro pre-processor (D) assembler

 Ans: (B)

Q.6 Shell is the exclusive feature of

 (A) UNIX (B) DOS

 (C) System software (D) Application software

 Ans: (A)

Q.7 A program in execution is called

 (A) Process (B) Instruction

 (C) Procedure (D) Function

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 2

 Ans: (A)

 Q.8 Interval between the time of submission and completion of the job is
called
 (A) Waiting time (B) Turnaround time

 (C) Throughput (D) Response time

 Ans: (B)

Q.9 A scheduler which selects processes from secondary storage device is

called
 (A) Short term scheduler. (B) Long term scheduler.

 (C) Medium term scheduler. (D) Process scheduler.

 Ans: (C)

Q.10 The scheduling in which CPU is allocated to the process with least CPU-burst time

 is called
 (A) Priority Scheduling (B) Shortest job first Scheduling

 (C) Round Robin Scheduling (D) Multilevel Queue Scheduling

 Ans: (B)

Q.11 The term ‘page traffic’ describes
 (A) number of pages in memory at a given instant.
 (B) number of papers required to be brought in at a given page request.
 (C) the movement of pages in and out of memory.

 (D) number of pages of executing programs loaded in memory.

 Ans: (C)

Q.12 The “turn-around” time of a user job is the
 (A) time since its submission to the time its results become available.
 (B) time duration for which the CPU is allotted to the job.
 (C) total time taken to execute the job.

 (D) time taken for the job to move from assembly phase to completion phase.

 Ans: (C)

Q.13 Which of the following can be used as a criterion for classification of data

structures used in language processing.
(A) nature of a data structure (B) purpose of a data structure

(C) lifetime of a data structure (D) all of the above.

 Ans: (D)

Q.14 Memory utilization factor shall be computed as follows
(A) memory in use/allocated memory.
(B) memory in use/total memory connected.

(C) memory allocated/free existing memory.
(D) memory committed/total memory available.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 3

 Ans: (B)

Q.15 Program ‘preemption’ is
(A) forced de allocation of the CPU from a program which is executing on the

CPU.
(B) release of CPU by the program after completing its task.
(C) forced allotment of CPU by a program to itself.
(D) a program terminating itself due to detection of an error.

 Ans: (A)

Q.16 An assembler is
(A) programming language dependent.
(B) syntax dependant.
(C) machine dependant.
(D) data dependant.

 Ans: (C)

Q.17 Which of the following is not a fundamental process state
 (A) ready (B) terminated

(C) executing (D) blocked

 Ans: (D)

Q.18 ‘LRU’ page replacement policy is
(A) Last Replaced Unit. (B) Last Restored Unit.
(C) Least Recently Used. (D) Least Required Unit.

 Ans: (C)

Q.19 Which of the following is true?
(A) Block cipher technique is an encryption technique.
(B) Steam cipher technique is an encryption technique.
(C) Both (A) and (B).
(D) Neither of (A) and (B).

 Ans: (C)

Q.20 Which of the following approaches do not require knowledge of the system state?
(A) deadlock detection. (B) deadlock prevention.
(C) deadlock avoidance. (D) none of the above.

 Ans: (D)

Q.21 Program generation activity aims at
 (A) Automatic generation of program

 (B) Organize execution of a program written in PL

(C) Skips generation of program

(D) Speedens generation of program

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 4

 Ans: (A)

Q.22 Which amongst the following is not an advantage of Distributed systems?

(A) Reliability (B) Incremental growth

(C) Resource sharing (D) None of the above

 Ans: (A)

Q.23 An imperative statement

(A) Reserves areas of memory and associates names with them

(B) Indicates an action to be performed during execution of assembled program

(C) Indicates an action to be performed during optimization

(D) None of the above

 Ans: (B)

Q.24 Which of the following loader is executed when a system is first turned on or
restarted

(A) Boot loader (B) Compile and Go loader
(C) Bootstrap loader (D) Relating loader

 Ans: (C)

Q.25 Poor response time is usually caused by

(A) Process busy

(B) High I/O rates
(C) High paging rates
(D) Any of the above

 Ans: (D)

Q.26 “Throughput” of a system is

(A) Number of programs processed by it per unit time

(B) Number of times the program is invoked by the system

(C) Number of requests made to a program by the system

(D) None of the above

 Ans: (A)

 Q.27 The “blocking factor” of a file is
(A) The number of blocks accessible to a file
(B) The number of blocks allocated to a file

(C) The number of logical records in one physical record

(D) None of the above

 Ans: (C)

 Q.28 Which of these is a component of a process precedence sequence?
(A) Process name (B) Sequence operator ‘;’
(C) Concurrency operator ‘,’ (D) All of the above

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 5

 Ans: (D)

Q.29 Which amongst the following is valid syntax of the Fork and Join Primitive?

(A) Fork <label> (B) Fork <label>

 Join <var> Join <label>

(C) For <var> (D) Fork <var>

 Join <var> join <var>

 Ans: (A)

 Q.30 Nested Macro calls are expanded using the
(A) FIFO rule (First in first out) (B) LIFO (Last in First out)
(C) FILO rule (First in last out) (D) None of the above

 Ans: (B)

 Q.31 A parser which is a variant of top-down parsing without backtracking is
 (A) Recursive Descend. (B) Operator Precedence.

 (C) LL(1) parser. (D) LALR Parser.

 Ans: (A)

 Q.32 The expansion of nested macro calls follows
(A) FIFO rule. (B) LIFO rule.

 (C) LILO rule. (D) priority rule.

 Ans: (B)

 Q.33. In a two-pass assembler, the task of the Pass II is to
(A) separate the symbol, mnemonic opcode and operand
 fields.
(B) build the symbol table.
(C) construct intermediate code.
(D) synthesize the target program.

 Ans: (D)

Q.34 A linker program
 (A) places the program in the memory for the purpose of execution.
 (B) relocates the program to execute from the specific memory area

 allocated to it.
 (C) links the program with other programs needed for its execution.

 (D) interfaces the program with the entities generating its input data.

 Ans: (C)

Q.35 Which scheduling policy is most suitable for a time-shared operating system

 (A) Shortest-job First. (B) Elevator.
(C) Round-Robin. (D) First-Come-First-Serve.

 Ans: (C)

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 6

Q.36 A critical section is a program segment

(A) which should run in a certain specified amount of time.
(B) which avoids deadlocks.
(C) where shared resources are accessed.

(D) which must be enclosed by a pair of semaphore operations, P and V.

 Ans: (C)

Q.37 An operating system contains 3 user processes each requiring 2 units of resource

R .The minimum number of units of R such that no deadlocks will ever arise is
(A) 4. (B) 3.

 (C) 5. (D) 6.

 Ans: (A)

Q.38 Locality of reference implies that the page reference being made by a process

(A) will always be to the page used in the previous page reference.
(B) is likely to be the one of the pages used in the last few page references.

(C) will always be to one of the pages existing in memory.
(D)will always lead to a page fault.

 Ans: (B)

Q.39 Which of these is not a part of Synthesis phase

(A) Obtain machine code corresponding to the mnemonic from the
Mnemonics table

(B) Obtain address of a memory operand from the symbol table

(C) Perform LC processing

(D) Synthesize a machine instruction or the machine form of a constant

 Ans: (C)

Q.40 The syntax of the assembler directive EQU is
(A) EQU <address space> (B) <symbol>EQU<address space>

(C) <symbol>EQU (D) None of the above

 Ans: (B)

Q.41 The following features are needed to implement top down parsing
(A) Source string marker
(B) Prediction making mechanism
(C) Matching and Backtracking mechanism

(D) All of the above

 Ans: (D)

Q.42 A macro definition consists of

 (A) A macro prototype statement (B) One or more model statements
(C) Macro pre-processor statements (D) All of the above

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 7

 Ans: (D)

Q.43 The main reason to encrypt a file is to ______________.
(A) Reduce its size (B) Secure it for transmission

(C) Prepare it for backup (D) Include it in the start-up sequence

 Ans: (B)

Q.44 Which of the following is not a key piece of information, stored in single page table
entry, assuming pure paging and virtual memory
(A) Frame number
(B) A bit indicating whether the page is in physical memory or on the disk

(C) A reference for the disk block that stores the page

(D) None of the above

 Ans: (C)

Q.45 A UNIX device driver is
(A) Structured into two halves called top half and bottom half
(B) Three equal partitions
(C) Unstructured

(D) None of the above

 Ans: (A)

Q.46 The following is not a layer of IO management module
(A) PIOCS (Physical Input Output Control System)
(B) LIOCS (Logical Input Output Control System)
(C) FS (File System)
(D) MCS (Management Control System)

 Ans: (D)

Q.47 Which amongst the following is not a valid page replacement policy?
(A) LRU policy (Least Recently Used)
(B) FIFO policy (First in first out)
(C) RU policy (Recurrently used)

(D) Optimal page replacement policy

 Ans: (C)

Q.48 Consider a program with a linked origin of 5000. Let the memory area allocated to it
have the start address of 70000. Which amongst the following will be the value
to be loaded in relocation register?
(A) 20000 (B) 50000

(C) 70000 (D) 90000

Ans: (None of the above choice in correct.)

Q.49 An assembly language is a
(A) low level programming language

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 8

(B) Middle level programming language
(C) High level programming language
(D) Internet based programming language

Ans: (A)

Q.50 TII stands for

(A) Table of incomplete instructions
(B) table of information instructions
(C) translation of instructions information
(D) translation of information instruction

Ans: (A)

Q.51 An analysis, which determines the syntactic structure of the source statement, is

called
(A) Sementic analysis (B) process analysis
(C) Syntax analysis (D) function analysis

Ans: (C)

Q.52 Action implementing instruction’s meaning are a actually carried out by
 (A) Instruction fetch
 (B) Instruction decode
 (C) instruction execution
 (D) Instruction program

Ans: (C)

Q.53 The field that contains a segment index or an internal index is called
 (A) target datum (B) target offset
 (C) segment field (D) fix dat

 Ans: (A)

Q.54 A program in execution is called

 (A) process (B) function
 (C) CPU (D) Memory

 Ans: (A)

Q.55 Jobs which are admitted to the system for processing is called

(A) long-term scheduling (B) short-term scheduling
(C) medium-term scheduling (D) queuing

 Ans: (A)

Q.56 A set of techniques that allow to execute a program which is not entirely in memory
 is called

 (A) demand paging (B) virtual memory
 (C) auxiliary memory (D) secondary memory

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 9

 Ans: (B)

Q. 57 SSTF stands for
 (A) Shortest-Seek-time-first scheduling (B) small – small-time-first

 (C) simple-seek-time-first (D) small-simple-time-first
scheduling

 Ans: (A)

Q.58 Before proceeding with its execution, each process must acquire all the resources
 it needs is called
 (A) hold and wait (B) No pre-emption
 (C) circular wait (D) starvation

 Ans: (A)

Q.59 Virtual memory is
 (A) simple to implement
 (B) used in all major commercial operating systems
 (C) less efficient in utilization of memory
 (D) useful when fast I/O devices are not available

 Ans: (B)

Q.60 Relocation bits used by relocating loader are specified by
(A) Relocating loader itself (B) Assembler or Translator
(C) Macro processor (D) Both (A) and (B)

 Ans: (B)

Q.61 Resolution of externally defined symbols is performed by
(A) Linker (B) Loader
(C) Compiler (D) Editor

 Ans: (A)

Q.62 Relocatable programs
(A) cannot be used with fixed partitions

(B) can be loaded almost anywhere in memory
(C) do not need a linker
(D) can be loaded only at one specific location

 Ans: (B)

Q.63 Page stealing
(A) is a sign of efficient system
(B) is taking page frames other working sets
(C) should be the tuning goal
(D) is taking larger disk spaces for pages paged out

 Ans: (B)

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 10

Q.64 The total time to prepare a disk drive mechanism for a block of data to be read
from is its

(A) latency
(B) latency plus transmission time
(C) latency plus seek time
(D) latency plus seek time plus transmission time

 Ans: (C)

Q.65 To avoid race condition, the maximum number of processes that may be

simultaneously inside the critical section is
 (A) zero (B) one

(C) two (D) more than two

 Ans: (B)

 Q.66 The memory allocation scheme subject to “external” fragmentation is
(A) segmentation (B) swapping

(C) pure demand paging (D) multiple fixed contiguous partitions

 Ans: (A)

Q.67 Page fault frequency in an operating system is reduced when the
(A) processes tend to the I/O-bound

(B) size of pages is reduced

(C) processes tend to be CPU-bound
(D) locality of reference is applicable to the process

 Ans: (D)

Q.68 In which of the following page replacement policies Balady’s anomaly occurs?
(A) FIFO (B) LRU

(C) LFU (D) NRU

 Ans: (A)

Q.69 Which of the following are language processors?
 (A) Assembler (B) Compiler
 (C) Interpreter (D) All of the above

 Ans: (D)

Q.70 Virtual memory can be implemented with

 (A) Segmentation (B) Paging
 (C) None (D) all of the above

 Ans: (D)

Q.71 Recognition of basic syntactic constructs through reductions, this task is performed
 by
 (A) Lexical analysis (B) Syntax analysis

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 11

 (C) Semantic analysis (D) Structure analysis
 Ans: (B)

 Q.72 A grammar for a programming language is a formal description of
 (A) Syntax (B) Semantics
 (C) Structure (D) Code

 Ans: (C)

Q.73 ____________ is a technique of temporarily removing inactive programs from the

memory of computer system
 (A) Swapping (B) Spooling
 (C) Semaphore (D) Scheduler

 Ans: (A)

Q.74 ___________ is a technique of improving the priority of process waiting in Queue

for CPU allocation
 (A) Starvation (B) Ageing
 (C) Revocation (D) Relocation

 Ans: (B)

 Q.75 ________ is the time required by a sector to reach below read/write head.
 (A) Seek Time (B) Latency Time
 (C) Access time (D) None

 Ans: (B)

 Q.76 Which of the following is most general phase structured grammar?
 (A) Context – Sensitive (B) Regular
 (C) Context – Free (D) None of the above

 Ans: (A)

 Q.77 File record length
 (A) Should always be fixed
 (B) Should always be variable
 (C) Depends upon the size of file
 (D) Should be chosen to match the data characteristics.

 Ans: (D)

Q.78 A public key encryption system
 (A) Allows only the correct receiver to decode the data
 (B) Allows only one to decode the transmission.
 (C) Allows only the correct sender to decode the data.
 (D) Does not encode the data before transmitting it.

 Ans: (A)

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 12

PART – II

DESCRIPTIVES

 Q.1. Discuss in detail Table management Techniques? (7)

 Ans:

 An Assembler uses the following tables:
OPTAB: Operation Code Table Contains mnemonic operation code and its machine
language equivalent.
SYMTAB: Symbol Table maintains symbolic label, operand and their corresponding
machine.
LITTAB is a table of literals used in the program

For efficiency reasons SYMTAB must remain in main memory throughout passes I
and II of the assembler. LITTAB is not accessed as frequently as SYMTAB, however
it may be accessed sufficiently frequently to justify its presence in the memory. If
memory is at a premium, only a part of LITTAB can be kept in memory. OPTAB
should be in memory during pass I

Q.2 Define the following:
(i) Formal language Grammars.
(ii) Terminal symbols.
(iii) Alphabet and String. (9)

 Ans:

(i) A formal language grammar is a set of formation rules that describe which strings
formed from the alphabet of a formal language are syntactically valid, within the
language. A grammar only addresses the location and manipulation of the strings of the
language. It does not describe anything else about a language, such as its semantics.
As proposed by Noam Chomsky, a grammar G consists of the following components:

• A finite set N of non terminal symbols.

• A finite set Σ of terminal symbols that is disjoint from N.

• A finite set P of production rules, each rule of the form

where
*
 is the Kleene star operator and denotes set union. That is, each production

rule maps from one string of symbols to another, where the first string contains at
least one non terminal symbol.

• A distinguished non terminal symbol from set N that is the start symbol.
(ii)Terminal symbols are literal strings forming the input of a formal grammar and
cannot be broken down into smaller units without losing their literal meaning. In simple
words, terminal symbols cannot be changed using the rules of the grammar; that is,
they're the end of the line, or terminal. For example, if the grammar rules are that x can
become xa and x can become ax, then a is a terminal symbol because it cannot become
something else. These are the symbols which can appear as it is in the programme.
 (iii) A finite set of symbols is called alphabet. An alphabet is often denoted by sigma,
yet can be given any name.
 B = {0, 1} says B is an alphabet of two symbols, 0 and 1.
 C = {a, b, c} says C is an alphabet of three symbols, a, b and c.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 13

 Sometimes space and comma are in an alphabet while other times they are meta
symbols used for descriptions. A language is defined over an alphabet. For example
binary language is defined over alphabet B.
A finite sequence of symbols from an alphabet is called string or word.
01110 and 111 are strings from the alphabet B above.

 aaabccc and b are strings from the alphabet C above.
 A null string is a string with no symbols, usually denoted by epsilon has zero length.

Q.3. What is parsing? Write down the drawback of top down parsing of backtracking. (7)

Ans:

Parsing is the process of analyzing a text, made of a sequence of tokens, to
determine its grammatical structure with respect to a given formal grammar. Parsing
is also known as syntactic analysis and parser is used for analyzing a text. The task
of the parser is essentially to determine if and how the input can be derived from the
start symbol of the grammar. The input is a valid input with respect to a given formal
grammar if it can be derived from the start symbol of the grammar.
Following are drawbacks of top down parsing of backtracking:
(i) Semantic actions cannot be performed while making a prediction. The actions

must be delayed until the prediction is known to be a part of a successful parse.
(ii) Precise error reporting is not possible. A mismatch merely triggers

backtracking. A source string is known to be erroneous only after all predictions
have failed.

 Q.4. Give the Schematic of Interpretation of HLL program and execution of a machine

language program by the CPU. (8)

 Ans:

The CPU uses a program counter (PC) to note the address of next instruction to be
executed. This instruction is subjected to the instruction execution cycle consisting of
the following steps:
 1. Fetch the instruction.
 2. Decode the instruction to determine the operation to be performed, and also its
operands.
 3.Execute the instruction.
At the end of the cycle, the instruction address in PC is updated and the cycle is
repeated for the next instruction. Program interpretation can proceed in a similar
manner. The PC can indicate which statement of the source program is to be

PC

Source
Program
 +
 Data

Interpreter

Errors

Memory CPU

PC

Machine
language
program
 +
 Data

Memory

a b

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 14

interpreted next. This statement would be subjected to the interpretation cycle, which
consists of the following steps:

1. Fetch the statement.
2. Analyse the statement and determine its meaning, viz . the computation to be

performed and its operands.
3. Execute the meaning of the statement.

Q.5. Give the difference between multiprogramming and multiprocessing. (5)

 Ans:

A multiprocessing system is a computer hardware configuration that includes more
than one independent processing unit. The term multiprocessing is generally used to
refer to large computer hardware complexes found in major scientific or commercial
applications. The multiprocessor system is characterized by-increased system
throughput and application speedup-parallel processing. The main feature of this
architecture is to provide high speed at low cost in comparison to uni- processor.
A multiprogramming operating system is system that allows more than one active
user program (or part of user program) to be stored in main memory simultaneously.
Multi programmed operating systems are fairly sophisticated. All the jobs that enter
the system are kept in the job pool. This pool consists of all processes residing on mass
storage awaiting allocation of main memory. If several jobs are ready to be brought
into memory, and there is not enough room for all of them, then the system must
choose among them. A time-sharing system is a multiprogramming system.

Q.6. Write down different system calls for performing different kinds of tasks. (4)

 Ans:

A system call is a request made by any program to the operating system for
performing tasks -- picked from a predefined set -- which the said program does not
have required permissions to execute in its own flow of execution. System calls
provide the interface between a process and the operating system. Most operations
interacting with the system require permissions not available to a user level process,
e.g. I/O performed with a device present on the system or any form of communication
with other processes requires the use of system calls.
The main types of system calls are as follows:
• Process Control: These types of system calls are used to control the processes.
Some examples are end, abort, load, execute, create process, terminate process etc.
• File Management: These types of system calls are used to manage files. Some
examples are Create file, delete file, open, close, read, write etc.
• Device Management: These types of system calls are used to manage devices.
Some examples are Request device, release device, read, write, get device attributes
etc.

Q.7. Differentiate between pre-emptive and non-pre-emptive scheduling. (4)

 Ans:

 In a pre-emptive scheduling approach, CPU can be taken away from a process if
there is a need while in a non-pre-emptive approach if once a process has been
given the CPU, the CPU cannot be taken away from that process, unless the
process completes or leaves the CPU for performing an Input Output.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 15

 Pre-emptive scheduling is more useful in high priority process which requires
immediate response, for example in real time system. While in nonpreemptive

systems, jobs are made to wait by longer jobs, but treatment of all processes is
fairer.

Q.8. CPU burst time indicates the time, the process needs the CPU. The following are
 the set of processes with their respective CPU burst time (in milliseconds).
 Processes CPU-burst time

 P1 10

 P2 5

 P3 5
 Calculate the average waiting time if the process arrived in the following

order:
 (i) P1, P2 & P3 (ii) P2, P3 & P1 (6)

 Ans:

 Considering FCFS scheduling
Process Burst Time
P1 10

P2 5

P3 5

 (i) Suppose that the processes arrive in the order: P1 , P2 , P3

 The Gantt Chart for the schedule is:

 Waiting time for P1 = 0; P2 = 10; P3 = 15

 Average waiting time: (0 + 10 + 15)/3 = 8.33 unit of time

 (ii)Suppose that the processes arrive in the order P2, P3 , P1 .

 The Gantt chart for the schedule is:

 Waiting time for P1 = 10; P2 = 0; P3 = 5

 Average waiting time: (10 + 0 + 5)/3 = 5 unit of time.

Q.9. What is a semaphore? Explain busy waiting semaphores. (6)

 Ans:

A semaphore is a protected variable or abstract data type which constitutes the
classic method for restricting access to shared resources such as shared memory in a
parallel programming environment.

P1 P2 P3

10 15 20 0

P1 P3 P2

10 5 20 0

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 16

Weak, Busy-wait Semaphores:

• The simplest way to implement semaphores.

• Useful when critical sections last for a short time, or we have lots of CPUs.

• S initialized to positive value (to allow someone in at the beginning).

• S is an integer variable that, apart from initialization, can only be accessed through 2
atomic and mutually exclusive operations:

wait(s):

while (s.value != 0);

s.value--;

signal(s):

s.value++;

 All happens atomically i.e. wrap pre and post protocols.

Q.10. What are the four necessary conditions of deadlock prevention? (4)

Ans:

Four necessary conditions for deadlock prevention:
1. Removing the mutual exclusion condition means that no process may have
exclusive access to a resource. This proves impossible for resources that cannot be
spooled, and even with spooled resources deadlock could still occur. Algorithms that
avoid mutual exclusion are called non-blocking synchronization algorithms.
 2. The "hold and wait" conditions may be removed by requiring processes to request
all the resources they will need before starting up. Another way is to require processes
to release all their resources before requesting all the resources they will need.
 3. A "no preemption" (lockout) condition may also be difficult or impossible to avoid
as a process has to be able to have a resource for a certain amount of time, or the
processing outcome may be inconsistent or thrashing may occur. However, inability
to enforce preemption may interfere with a priority algorithm. Algorithms that allow
preemption include lock-free and wait-free algorithms and optimistic concurrency
control.
 4. The circular wait condition: Algorithms that avoid circular waits include "disable
interrupts during critical sections", and "use a hierarchy to determine a partial
ordering of resources" and Dijkstra's solution.

Q.11. Define the following:
 (i) FIFO Page replacement algorithm.
 (ii) LRU Page replacement algorithm. (6)

Ans:

(i) FIFO policy: This policy simply removes pages in the order they arrived in the
main memory. Using this policy we simply remove a page based on the time of its
arrival in the memory. For example if we have the reference string: 1, 2, 3, 4, 1, 2, 5,
1, 2, 3, 4, 5 and 3 frames (3 pages can be in memory at a time per process) then we
have 9 page faults as shown

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 17

If frames are increased say to 4, then number of page faults also increases, to 10 in
this case.

(ii) LRU policy: LRU expands to least recently used. This policy suggests that we re-
move a page whose last usage is farthest from current time. For reference string: 1, 2,
3, 4, 1, 2, 5, 1, 2, 3, 4, 5, we have the following page faults

Q.12. List the properties which a hashing function should possess to ensure a good
 search performance. What approaches are adopted to handle collision? (8)

 Ans:

A hashing function h should possess the following properties to ensure good search
performance:
1.The hashing function should not be sensitive to the symbols used in some source
program. That is it should perform equally well for different source programs.
2.The hashing function h should execute reasonably fast.

 The following approaches are adopted to handle collision are:
Chaining: One simple scheme is to chain all collisions in lists attached to the
appropriate slot. This allows an unlimited number of collisions to be handled and
doesn't require a priori knowledge of how many elements are contained in the
collection. The tradeoff is the same as with linked lists versus array implementations
of collections: linked list overhead in space and, to a lesser extent, in time.
Rehashing: Re-hashing schemes use a second hashing operation when there is a
collision. If there is a further collision, we re-hash until an empty "slot" in the table is
found. The re-hashing function can either be a new function or a re-application of the
original one. As long as the functions are applied to a key in the same order, then a
sought key can always be located.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 18

Overflow chaining: Another scheme will divide the pre-allocated table into two
sections: the primary area to which keys are mapped and an area for collisions,
normally termed the overflow area. When a collision occurs, a slot in the overflow
area is used for the new element and a link from the primary slot established as in a
chained system. This is essentially the same as chaining, except that the overflow area
is pre-allocated and thus possibly faster to access. As with re-hashing, the maximum
number of elements must be known in advance, but in this case, two parameters must
be estimated: the optimum size of the primary and overflow areas.

Q.13. What is assembly language? What kinds of statements are present in an assembly
 language program? Discuss. Also highlight the advantages of assembly language.

 (8)
 Ans:

Assembly language is a family of low-level language for programming computers,
microprocessors, microcontrollers etc. They implement a symbolic representation of
the numeric machine codes and other constants needed to program a particular CPU
architecture. This representation is usually defined by the hardware manufacturer, and
is based on abbreviations (called mnemonic) that help the programmer remember

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 19

individual instruction, register etc. Assembly language programming is writing
machine instructions in mnemonic form, using an assembler to convert these
mnemonics into actual processor instructions and associated data.
An assembly program contains following three kinds of statements:
1. Imperative statements: These indicate an action to be performed during execution
of the assembled program. Each imperative statement typically translates into one
machine instruction.
2. Declaration statements: The syntax of declaration statements is as follows:

 [Label] DS<constant>
 [Label] DC ‘<value>’

The DS statement reserves areas of memory and associates names with them.
The DC statement constructs memory words containing constants.
3. Assembler directives: These instruct the assembler to perform certain actions
during the assembly of a program. For example
START <constant> directive indicates that the first word of the target program
generated by the assembler should be placed in the memory word with address
<constant>.
The advantages of assembly language program would be

• reduced errors
• faster translation times
• changes could be made easier and faster

Q.14. What is an expression tree? How an expression is evaluated using an expression
tree? Discuss its advantages over the other evaluation techniques. (8)

 Ans:

Algebraic expressions such as
 a/b+(c-d)e

have an inherent tree-like structure. For example, following figure is a representation
of the expression in above equation. This kind of tree is called an expression tree.

The terminal nodes (leaves) of an expression tree are the variables or constants in the
expression (a, b, c, d, and e). The non-terminal nodes of an expression tree are the

operators (+, -, , and)
The expression tree is evaluated using a post-order traversal of the expression tree as
follows:

1. If this node has no children, it should return the value of the node
2. Evaluate the left hand child
3. Evaluate the right hand child
4. Then evaluate the operation indicated by the node and return this value

An expression tree is advantageous for:

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 20

• Understanding the order of operation. Operations that must be done sooner are further
to the right in the tree.

• Counting the number of terms or factors in an expression. Each term or factor is a
child node. For example the expression (a+b)/c+2*d contains two terms.

Q.15. Draw an expression tree for the string.
 f + (x+y) *((a+b)/(c-d))
 Indicate the register requirement for each node and list out the evaluation order for
 the expression tree. (8)

 Ans:

An expression tree for the string “f + (x+y) *((a+b)/(c-d))” is given below:
Maximun register requirement is 2.

The expression will be evaluated in the following order: resister R1 first, then
 register R2, and so on.

f + (x+y) * ((a+b) / (c-d))

Q.16. Explain the following:-
(i) Elimination of common sub expressions during code optimisation.
(ii) Pure and impure interpreters.
(iii) Lexical substitution during macro expansion.
(iv)Overlay structured program.
(v) Facilities of a debug monitor.
(vi) Actions of an interrupt processing routine.
(vii) Real time operating system.
(viii) Fork-join. (16)

R1 R2
R3

R4

R5

R6

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 21

 Ans:

(i) Elimination of common sub expression during code optimization
An optimizing transformation is a rule for rewriting a segment of a program to
improve its execution efficiency without affecting its meaning. One of the
techniques is “Common sub expression elimination”
 In the expression "(a+b)-(a+b)/4", "common subexpression" refers to the
duplicated "(a+b)". Compilers implementing this technique realize that "(a+b)" won't
change, and as such, only calculate its value once.
(ii) Pure and impure interpreters

In a pure interpreter, the source program is retained in the source form all through its
interpretation. This arrangement incurs substantial analysis overheads while
interpreting a statement.An impure interpreter performs some preliminary processing
of the source program to reduce the analysis overheads during interpretation. The
preprocessor converts the program to an intermediate representation (IR), which is
used during interpretation. This speeds up interpretation as the code component of
the IR i.e the IC, can be analyzed more efficiently than the source form of the
program.
(iii)Lexical substitution during macro expansion: Lexical substitution is used to
generate an assembly statement from a model statement. A model statement consists
of 3 types of strings:

1. An ordinary string, which stands for itself.
2. The name of a formal parameter which is preceded by the character ‘&’.
3. The name of a preprocessor variable, which is also preceded by the character

‘&’.
 During lexical expansion, strings of type 1 are retained without substitution. Strings
of types 2 and 3 are replaced by the ‘values’ of the formal parameters or
preprocessor variables. The value of a formal parameter is the corresponding actual
parameter string.
(iv) Overlay structured program: A program containing overlays is referred as
overlay structured program where an overlay is a part of program which has the
same load origin as some other part(s) of the program. Such a program consists of
1. A permanently resident portion, called the root
2. A set of overlays
The overlay structure of a program is designed by identifying mutually exclusive
modules-that is, modules that do not call each other. The basic idea is that such
modules do not need to reside simultaneously in memory. Hence they are located in
different overlays with the same load origin.
(v) Facilities of a debug monitor are as follows:
a. Setting breakpoints in the program
b. Initiating a debug conversation when control reaches a breakpoint
c. Displaying values of variables

d. Assigning new values to variables

e. Testing user defined assertions and predicates involving program variables.
(vi) Action of an interrupt processing routine are as follows:
1. Save contents of CPU registers. This action is not necessary if the CPU registers
are saved by the interrupt action itself.
2. Process the interrupt and take appropriate actions. The interrupt code field of
saved PSW information unit corresponding to this interrupt contains useful
information for this purpose.
3. Return from interrupt processing.
(vii) Real time operating System

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 22

A real-time operating system has well-defined, fixed time constraints. Processing
must be done within the defined constraints, or the system will fail. A real time
system is considered to function correctly only if it returns the correct result within
any time constraints. So the following features are desirable in a real-time operating
system:
1. Multi-tasking within an application
2. Ability to define the priorities of tasks
3. Priority driven or deadline oriented scheduling
4. Programmer defined interrupts.
(viii) fork-join are primitives in a higher level programming language for
implementing interacting processes. The syntax is as follows:
fork <label>;
join <var>;
where <label> is a label associated with some program statement, and <var> is a
variable. A statement fork label1 causes creation of a new process that starts
executing at the statement with the label label1. This process is concurrent with the
process which executed the statement fork label1.A join statement synchronizes the
birth of a process with the termination of one or more processes.
Fork-Join provide a functionally complete facility for control synchronization.

Q.17. List and explain the three events concerning resource allocation. Define the
following:

(i) Deadlock.
(ii) Resource request and allocation graph (RRAG)
(iii)Wait for graph (WFG) (6)

 Ans:

(i) Deadlock: Each process in a set of processes is waiting for an event that only
a process in the set can cause.
(ii) Deadlocks can be described by a directed bipartite graph called a Resource-
Request-Allocation graph (RRAG).A graph G = (V,E) is called bipartite if V
can be decomposed into two disjoint sets V1 and V2 such that every edge in E

joins a vertex in V1 to a vertex in V2.Let V1 be a set of processes and V2 be a set

of resources. Since the graph is directed we will consider:

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 23

• an edge (Rj,Pi) (an assignment edge) to mean that resource Rj has been

allocated to process Pi

• an edge (Pi,Rj) (called a request edge) to mean that process Pi has requested

resource Rj

(iii)

1. Use a resource allocation graph to derive a wait-for graph.
2. Wait-for graph obtained by making an edge from p1 to p2 iff p1 is waiting for a
resource that is allocated to p2.
3. Deadlock exists iff a cycle exists in resulting wait-for graph.

Q.18. A system contains 10 units of resource class Ru. The resource requirements of
three user processes P1, P2 and P3 are as follows

 P1 P2 P3
 Maximum requirements 8 7 5
 Current allocation 3 1 3
 Balance requirements 5 6 2
 New request made 1 0 0
 Using Banker’s algorithm, determine if the projected allocation state is safe

and whether the request of P1 will be granted or not. (6)

Ans:

From the given data:
 Total_alloc=[7]
 Total_exist=[10]

The projected allocation state is feasible since the total allocation in it does not
exceed the number of resource units of Ru. Since P3 is two units short of its
maximum requirements and two unallocated units exits in the system, hence P3 can
complete. This will release the resources allocated to it, that is, 5 resources. Now
P1 can complete since the number of unallocated units of Ru exceeds the units
needed to satisfy its maximum requirement then P2 can be completed. Thus the

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 24

processes can finish in the sequence P3, P1, and P2. Hence projected allocation
state is safe so algorithm will grant the request made by P1.

Q.19. What is a race condition? Explain how does a critical section avoid this condition.
What are the properties which a data item should possess to implement a critical
section? (6)

Ans:

Race condition: The situation where several processes access – and manipulate
shared data concurrently. The final value of the shared data depends upon which
process finishes last. To prevent race conditions, concurrent processes must be
synchronized.
Data consistency requires that only one processes should update the value of a data
item at any time. This is ensured through the notion of a critical section. A critical
section for data item d is a section of code, which cannot be executed concurrently
with itself or with other critical sections for d. Consider a system of n processes (P0,
P1,…, P n-1), each process has a segment of code called a critical section, in which
the proceses may be changing common variables, updating a table, writing a file, and
so on. The important feature of the system is that, when one process is executing in its
critical section, no other process is to be allowed to execute in its critical section.
Thus the execution of critical sections by the processes is mutually exclusive in time.

 repeat

critical section

 remainder section
until FALSE

Solution to the Critical Section Problem must satisfy the following three
conditions:
1. Mutual Exclusion. If process Pi is executing in its critical section, then no

other processes can be executing in their critical sections.
2. Progress. If no process is executing in its critical section and there exist some
processes that wish to enter their critical section, then the selection of the processes
that will enter the critical section next cannot be postponed indefinitely.
3. Bounded Waiting. A bound must exist on the number of times that other
processes are allowed to enter their critical sections after a process has made a request
to enter its critical section and before that request is granted.
—Assume that each process executes at a nonzero speed
—No assumption concerning relative speed of the n processes.

Q.20. Describe a solution to the Dining philosopher problem so that no races arise. (4)

 Ans:

 A solution to the dining philosopher problem:

 monitor DP
 {

Entry section

Exit section

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 25

 enum { THINKING; HUNGRY, EATING) state [5] ;

 condition self [5];

 void pickup (int i) {

 state[i] = HUNGRY;

 test(i);

 if (state[i] != EATING) self [i].wait;

 }

 void putdown (int i) {

 state[i] = THINKING;

 // test left and right neighbors

 test((i + 4) % 5);

 test((i + 1) % 5);

 }

void test (int i) {

 if ((state[(i + 4) % 5] != EATING) &&

 (state[i] == HUNGRY) &&

 (state[(i + 1) % 5] != EATING)) {

 state[i] = EATING ;

 self[i].signal () ;

 }

 }

 initialization_code() {

 for (int i = 0; i < 5; i++)

 state[i] = THINKING;

 }

}

Each philosopher I invokes the operations pickup() and putdown() in the following
sequence:

 dp.pickup (i)

 EAT

 dp.putdown (i)

Q.21. Discuss two main approaches to identify and reuse free memory area in a heap. (6)

 Ans:

Two popular techniques to identify free memory areas as a result of allocation and de-
allocations in a heap are:
1. Reference count: the system associates a reference count with each memory area to
indicate the number of its active users. This number is incremented when a user
accesses that area and decrements when user stops using that. The area is free if the
reference counts drops to zero. This scheme is very simple to implement however
incurs incremental overheads.
2. Garbage collection: In this technique two passes are made over the memory to
identify unused areas. In the first pass it traverses all pointers pointing to allocated
areas and marks the memory areas that are in use. The second pass finds all unmarked
areas and declares them to be free. The garbage collection overheads are not
incremental. They are incurred every time the system runs out of free memory to
allocate to fresh requests.
Two main approaches to reuse free memory area in a heap are:
First-fit: Allocate the first hole that is big enough. Searching can start either at the
beginning of the set of holes or where the previous first-fit search ended. Searching is
stopped as soon as a free hole is found that is large enough
Best-fit: Allocate the smallest hole that is big enough; Entire list is searched, unless
ordered by size. This strategy produces the smallest leftover hole.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 26

Q.22. List the steps needed to perform page replacement. Explain the different page
replacement policies. Also list out the main requirements, which should be
satisfied by a page replacement policy. (8)

 Ans:

 The steps needed to perform page replacement are:
1.Determine which page is to be removed from the memory.
2.Perform a page-out operation.
3.Perform a page-in operation.

 Different page replacement algorithms are briefly described below:

1. First-in, first-out

The first-in, first-out (FIFO) page replacement algorithm is a low-overhead
algorithm. Here the operating system keeps track of all the pages in memory in a
queue, with the most recent arrival at the back, and the earliest arrival in front.
When a page needs to be replaced, the page at the front of the queue (the oldest
page) is selected.
Advantage: FIFO is cheap and intuitive.
Disadvantage: 1. Performs poorly in practical application.
2. Suffers from Belady’s anomaly.
2. Not recently used

The not recently used (NRU) page replacement algorithm works on the following
principle: when a page is referenced, a referenced bit is set for that page, marking it
as referenced. Similarly, when a page is modified (written to), a modified bit is set.
At a certain fixed time interval, the clock interrupt triggers and clears the
referenced bit of all the pages, so only pages referenced within the current clock
interval are marked with a referenced bit. When a page needs to be replaced, the
operating system divides the pages into four classes:
• Class 0: not referenced, not modified
• Class 1: not referenced, modified
• Class 2: referenced, not modified
• Class 3: referenced, modified.
 The NRU algorithm picks a random page from the lowest category for removal.
3. Optimal page replacement algorithm

The optimal page replacement algorithm (also known as OPT)is an algorithm that
works as follows: when a page needs to be swapped in, the operating system swaps
out the page whose next use will occur farthest in the future. For example, a page
that is not going to be used for the next 6 seconds will be swapped out over a page
that is going to be used within the next 0.4 seconds.
Disadvantage: This algorithm cannot be implemented in the general purpose
operating system because it is impossible to compute reliably how long it will be
before a page is going to be used.
The main requirements, which should be satisfied by a page replacement

policy, are:

1. Non-interference with the program’s locality of reference: The page replacement
policy must not remove a page that may be referenced in the immediate future.
2. The page fault rate must not increase with an increase in the memory allocation
for a program.

Q.23. What is an I/O buffer? What is the advantage of buffering? Is buffering always
 effective? Justify your answer with help of an example. (8)

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 27

Ans:

One kind of I/O requirement arises from devices that have a very high character
density such as tapes and disks. With these characteristics, it is not possible to
regulate communication with devices on a character-by-character basis. The
information transfer, therefore, is regulated in blocks of information. Additionally,
sometimes this may require some kind of format control to structure the
information to suit the device and/or data characteristics. For instance, a disk drive
differs from a line printer or an image scanner. For each of these devices, the
format and structure of information is different. It should be observed that the rate
at which a device may provide data and the rates at which an end application may
consume it might be considerably different. In spite of these differences, the OS
should provide uniform and easy to use I/O mechanisms. Usually, this is done by
providing a I/O buffer. The OS manages this buffer so as to be able to comply with
the requirements of both the producer and consumer of data. Basically, the buffers
absorb mismatch in the data transfer rates of processor or memory on one side and
device on the other.

Q.24. Discuss the different techniques with which a file can be shared among different
 users. (8)

 Ans:

Some popular techniques with which a file can be shared among different users
are:
1. Sequential sharing: In this sharing technique, a file can be shared by only one
program at a time, that is, file accesses by P1 and P2 are spaced out over time. A
lock field can be used to implement this. Setting and resetting of the lock at file open
and close ensures that only one program can use the file at any time.
2. Concurrent sharing: Here a number of programs may share a file
concurrently. When this is the case, it is essential to avoid mutual interference
between them. There are three categories of concurrent sharing:

a. Immutable files: If a file is shared in immutable mode, none of the sharing
programs can modify it. This mode has the advantage that sharing programs
are independent of one another.

b. Single image immutable files: Here the changes made by one program are
immediately visible to other programs. The Unix file system uses this file-
sharing mode.

c. Multiple image mutable files: Here many programs can concurrently
update the shared file. Each updating program creates a new version of the
file, which is different from the version created by concurrent programs.
This sharing mode can only be used in applications where concurrent
updates and the existence of multiple versions are meaningful.

Q.25. Differentiate between protection and security. Explain the techniques used for
 protection of user files. (8)

Ans:
Operating system consists of a collection of objects, hardware or software. Each
object has a unique name and can be accessed through a well-defined set of
operations. Protection problem - ensure that each object is accessed correctly and
only by those processes that are allowed to do so.
 Security must consider external environment of the system, and protect it from:

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 28

• Unauthorized access.

• malicious modification or destruction

• Accidental introduction of inconsistency.
It is easier to protect against accidental than malicious misuse.
Protection of user files means that file owner/creator should be able to control:
what can be done and by whom. Various categories of access to files are:

• Read

• Write

• Execute

• Append

• Delete

• List

Q.26. What is parsing? Explain any three parsing techniques. (8)

Ans

Parsing is the process of analyzing a text, made of a sequence of tokens, to
determine its grammatical structure with respect to a given formal grammer. Parsing
is also known as syntactic analysis and parser is used for analyzing a text. The task
of the parser is essentially to determine if and how the input can be derived from the
start symbol of the grammar.
Following are three parsing techniques:
Top-down parsing - Top-down parsing can be viewed as an attempt to find left-most
derivations of an input-stream by searching for parse trees using a top-down
expansion of the given formal grammar rules. Tokens are consumed from left to right.
Inclusive choice is used to accommodate ambiguity by expanding all alternative right-
hand-sides of grammar rules.
Bottom-up parsing - A parser can start with the input and attempt to rewrite it to the
start symbol. Intuitively, the parser attempts to locate the most basic elements, then
the elements containing these, and so on. LR parsers are examples of bottom-up
parsers. Another term used for this type of parser is Shift-Reduce parsing.

Recursive descent parsing- It is a top down parsing without backtracking. This parsing
technique uses a set of recursive procedures to perform parsing. Salient advantages of
recursive descent parsing are its simplicity and generality. It can be implemented in
any language supporting recursive procedures.

Q.27. Draw the state diagram of a process from its creation to termination, including all
transitions, and briefly elaborate every state and every transition. (8)

 Ans:
As a process executes, it changes state

• new: The process is being created.

• running: Instructions are being executed.

• waiting: The process is waiting for some event to occur.

• ready: The process is waiting to be assigned to a processor.

• terminated: The process has finished execution.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 29

Q.28. Consider the following system snapshot using data structures in the Banker’s

algorithm, with resources A, B, C, and D, and process P0 to P4:

 Max Allocation Need Available

 A B C D A B C D A B C D A B C D

P0 6 0 1 2 4 0 0 1

P1 1 7 5 0 1 1 0 0

P2 2 3 5 6 1 2 5 4

P3 1 6 5 3 0 6 3 3

P4 1 6 5 6 0 2 1 2

 3 2 1 1

 Using Banker’s algorithm, answer the following questions.

 (a) How many resources of type A, B, C, and D are there? (2)

 (b) What are the contents of the Need matrix? (3)

(c) Is the system in a safe state? Why (4)
 (d) If a request from process P4 arrives for additional resources of (1,2,0,0,),

can the Banker’s algorithm grant the request immediately? Show the new
system state and other criteria. (7)

 Ans:

 (a) A-9; B-13;C-10;D-11

 (b) Need[i, j]=Max[i,j]-Allocation[i,j] so content of Need matrix is
 A B C D
 P0 2 0 1 1
 P1 0 6 5 0
 P2 1 1 0 2
 P3 1 0 2 0
 P4 1 4 4 4

 (c) The system is in a safe state as the processes can be finished in the
 sequence P0, P2, P4, P1 and P3.

(d) If a request from process P4 arrives for additional resources of (1,2,0,0,),
and if this request is granted, the new system state would be tabulated as
 follows.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 30

 Max Allocation Need Available
 A B C D A B C D A B C D A B C D

P0 6 0 1 2 4 0 0 1 2 0 1 1
P1 1 7 5 0 1 1 0 0 0 6 5 0
P2 2 3 5 6 1 2 5 4 1 1 0 2
P3 1 6 5 3 0 6 3 3 1 0 2 0
P4 1 6 5 6 1 4 1 2 0 2 4 4
 2 0 1 1

 After PO completes P3 can be allocated. 1020 from released 6012 and available

2011(Total 80 23) and <Po, P3, P4, P2, P1> is a safe sequence.

 Q.29. Define the following

(i) Process;
(ii) Process Control Block; (PCB)
(iii) Multi programming;
(iv)Time sharing. (8)

 Ans:

(i) Process: Process is a program in execution; process execution must progress in
sequential fashion. A process includes:

• program counter

• stack

• data section
(ii) Process Control Block (PCB): Information associated with each process is stored
in Process control Block.
Process state
Program counter
CPU registers
CPU scheduling information
Memory-management information
Accounting information
I/O status information

(iii) Multiprogramming: A multiprogramming operating system is system that
allows more than one active user program (or part of user program) to be stored in
main memory simultaneously. Multi programmed operating systems are fairly
sophisticated. All the jobs that enter the system are kept in the job pool. This pool
consists of all processes residing on mass storage awaiting allocation of main
memory. If several jobs are ready to be brought into memory, and there is not enough
room for all of them, then the system must choose among them. A time-sharing
system is a multiprogramming system.
(iv) Time Sharing: Sharing of a computing resource among many users by means of
multiprogramming and multi-tasking is known as timesharing. By allowing a large
number of users to interact concurrently with a single computer, time-sharing
dramatically lowered the cost of providing computing capability, made it possible for
individuals and organizations to use a computer without owning one, and promoted
the interactive use of computers and the development of new interactive applications.

Q.30. Why are Translation Look-aside Buffers (TLBs) important? In a simple paging

system, what information is stored in a typical TLB table entry? (8)

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 31

 Ans:

 The implementation of page-table is done in the following way:

• Page table is kept in main memory.

• Page-table base register (PTBR) points to the page table.

• Page-table length register (PRLR) indicates size of the page table.
• In this scheme every data/instruction access requires two memory accesses.

One for the page table and one for the data/instruction.
The two-memory access problem can be solved by the use of a special fast-lookup
hardware cache called associative memory or translation look-aside buffers (TLBs). A
set of associative registers is built of high-speed memory where each register consists
of two parts: a key and a value. When the associative registers are presented with an
item, it is compared with all keys simultaneously. If the item is found, the
corresponding value field is the output.

A typical TLB table entry consists of page# and frame#, when a logical address is
generated by the CPU, its page number is presented to a set of associative registers
that contain page number along with their corresponding frame numbers. If the page
number is found in the associative registers, its frame number is available and is used
to access memory. If the page number is not in the associated registers, a memory
reference to the page table must be made. When the frame number is obtained, it can
be used to access memory and the page number along with its frame number is added
to the associated registers.

Q.31. Why is segmented paging important (as compared to a paging system)? What are
the different pieces of the virtual address in a segmented paging? (6)

Ans:

Paging can be superimposed on a segment oriented addressing mechanism to
obtain efficient utilization of the memory. This is a clever scheme with advantages
of both paging as well as segmentation. In such a scheme each segment would have
a descriptor with its pages identified. So we have to now use three sets of offsets.
First, a segment offset helps to identify the set of pages. Next, within the
corresponding page table (for the segment), we need to identify the exact page
table. This is done by using the page table part of the virtual address. Once the
exact page has been identified, the offset is used to obtain main memory address
reference. The final address resolution is exactly same as in paging. The different
pieces of virtual address in a segmented paging is as shown below:

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 32

Q.32. Consider the situation in which the disk read/write head is currently located at track

45 (of tracks 0-255) and moving in the positive direction. Assume that the following
track requests have been made in this order: 40, 67, 11, 240, 87. What is the order in
which optimised C-SCAN would service these requests and what is the total seek
distance? (6)

 Ans:

 Disk queue: 40, 67, 11, 240, 87 and disk is currently located at track 45.The
order in which optimised C-SCAN would service these requests is shown by the
following diagram.

 0 11 40 45 67 87 240 255

Total seek distance=(67-45)+(87-67)+(240-87)+(255-240)+255+(11-0)+(40-11)
 =22+20+153+15+255+11+29
 =505

Q.33. Explain any three policies for process scheduling that uses resource consumption
information. What is response ratio? (8)

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 33

Ans:

 Three policies for process scheduling are described below in brief:
1. First-come First-served (FCFS) (FIFO)

– Jobs are scheduled in order of arrival
– Non-preemptive

 • Problem:

– Average waiting time can be large if small jobs wait behind long ones
– May lead to poor overlap of I/O and CPU and convoy effects

2. Shortest Job First (SJF)

– Choose the job with the shortest next CPU burst
– Provably optimal for minimizing average waiting time

 • Problem:

– Impossible to know the length of the next CPU burst
 3. Round Robin(RR)

– Often used for timesharing
– Ready queue is treated as a circular queue (FIFO)
– Each process is given a time slice called a quantum

– It is run for the quantum or until it blocks
– RR allocates the CPU uniformly (fairly) across all participants. If average
queue length is n, each participant gets 1/n
– As the time quantum grows, RR becomes FCFS
– Smaller quanta are generally desirable, because they improve response time

 • Problem:

 – Context switch overhead of frequent context switch
Highest Response Ratio Next (HRRN) scheduling is a non-preemptive discipline,
similar to Shortest Job First (SJF) in which the priority of each job is dependent on its
estimated run time, and also the amount of time it has spent waiting. Jobs gain higher
priority the longer they wait which prevents indefinite postponement . In fact, the jobs
that have spent a long time waiting compete against those which are estimated to have
short run times.

Q.34. What is a semaphore? Explain a binary semaphore with the help of an example? (4)

Ans:

A semaphore is a synchronization tool that provides a general-purpose solution to
controlling access to critical sections.
A semaphore is an abstract data type (ADT) that defines a nonnegative integer
variable which, apart from initialization, is accessed only through two standard
operations: wait and signal. The classical definition of wait in pseudo code is
 wait(S){

 while(S<=0)

 ; // do nothing

 S--;

 }

The classical definitions of signal in pseudocode is

 signal(S){

 S++;

 }

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 34

A binary semaphore is one that only takes the values 0 and 1. These
semaphores are used to implement mutual exclusion.

Q.35. Consider the following page reference and reference time strings for a program:
 Page reference string: 5,4,3,2,1,4,3,5,4,3,2,1,5,…..

Show how pages will be allocated using the FIFO page replacement policy. Also
calculate the total number of page faults when allocated page blocks are 3 and 4
respectively. (8)

 Ans:

 Page reference string is: 5,4,3,2,1,4,3,5,4,3,2,1,5,…..
For allocated page blocks 3, we have following FIFO allocation. Page reference
marked with ‘+’ cause page fault and result in page replacement which is
performed by replacing the earliest loaded page existing in memory:

 3 3 3 4 4 4 4 4 2 2 2

 4 4 4 1 1 1 5 5 5 5 5 5

5 5 5 2 2 2 3 3 3 3 3 1 1

Page Reference

For allocated page blocks 4, we have following FIFO allocation. Page reference
marked with ‘+’ cause page fault and result in page replacement.

 2 2 2 2 2 2 3 3 3 3

 3 3 3 3 3 3 4 4 4 4 5
 4 4 4 4 4 4 5 5 5 5 1 1

5 5 5 5 1 1 1 1 1 1 2 2 2

Total number of page faults =10 when allocated page blocks=3
Total number of page faults =11 when allocated page blocks=4

Q.36. What are the different parameter passing mechanisms to a function? Explain with
the help of example? (8)

Ans:

The various parameter-passing mechanisms are:
1. Call by value
2. Call by value-result
3. Call by reference
4. Call by name

In call by value mechanism, the values of actual parameters are passed to the called
function. These values are assigned to the corresponding formal parameters. If a
function changes the value of a formal parameter, the change is not reflected on the
corresponding actual parameter. This is commonly used for built-in functions of the

5+ 4+ 3+ 2+ 1+ 4+ 3+ 5+ 4 3 2+ 1+ 5

5+ 4+ 3+ 2+ 1+ 4 3 5+ 4+ 3+ 2+ 1+ 5+

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 35

language. Its main advantage is its simplicity. The compiler can treat formal
parameter as a local variable. This simplifies compilation considerably.
Call by value-result: This mechanism extends the capabilities of the call by value
mechanism by copying the values of formal parameters back into corresponding ctual
parameters at return. This mechanism inherits the simplicity of the call by value
mechanism but incurs higher overheads.
Call by reference: Here the address of an actual parameter is passed to the called
function. If the parameter is an expression, its value is computed and stored in a
temporary location and the address of the temporary location is passed to the called
function. If the parameter is an array element, its address is similarly computed at the
time of call. This mechanism is very popular because it has ‘cleaner’ semantics than
call by value-result.
Call by name: This parameter transmission mechanism has the same effect as if
every occurrence of a formal parameter in the body of the called function is replaced
by the name of the corresponding actual parameter. The actual parameter
corresponding to a formal parameter can change dynamically during the execution of
a function. This makes the call by name mechanism immensely powerful. However
the high overheads make it less attractive in practice.

Q.37. What is meant by inter process communication? Explain the two fundamental

models of inter process communication. (8)

 Ans:

Inter process Communication: The OS provides the means for cooperating
processes to communicate with each other via an inter process communication (IPC)
facility.
IPC provides a mechanism to allow processes to communicate and to synchronize
their actions without sharing the same address space. IPC is particularly useful in a
distributed environment where the communicating processes may reside on different
computers connected with a network.
IPC is best implemented by message passing system where communication among the
user processes is accomplished through the passing of messages. An IPC facility
provides at least the two operations:
send(message) and receive(message).
Two types of message passing system are as follows:
(a) Direct Communication: With direct communication, each process that wants to
communicate must explicitly name the recipient or sender of the communication. In
this scheme, the send and receive primitives are defined as:

• send(P, message)- Send a message to process P.

• receive(Q, message)- Receive a message from process Q.
A communication link in this scheme has the following properties:

• A link is established automatically between every pair of processes that
want to communicate. The processes need to know only each other’s
identity to communicate.

• A link is associated with exactly two processes.

• Exactly one link exists between each pair of processes.
(b)With indirect communication, the messages are sent to and received from
mailboxes, or ports. Each mailbox has a unique identification. In this scheme, a
process can communicate with some other process via a number of different

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 36

mailboxes. Two processes can communicate only if they share a mailbox. The send
and receive primitives are defined as follows:

• send (A, message)- Send a message to mailbox A

• receive (A, message)- Receive a message from mailbox A.
In this scheme, a communication link has the following properties:

• A link is established between a pair of processes only if both members
of the pair have a shared mailbox.

• A link may be associated with more than two processes.

• A number of different links may exist between each pair of
communicating processes, with each link corresponding to one
mailbox.

 Q.38. Differentiate between program translation and program interpretation. (6)

Ans:

 The program translation model bridges the execution gap by translating a program
written in a programming language, called the source program (SP), into an
equivalent program in the machine or assembly language of the computer system,
called the target program (TP). Following diagram depicts the program translation
model.

In a program interpretation process, the interpreter reads the source program and
stores it in its memory. It bridges an execution gap without generating a machine
language program so we can say that the interpreter is a language translator. However,
it takes one statement of higher-level language at a time, translates it into machine
language and executes it immediately. Translation and execution are carried out for
each statement. The absence of a target program implies the absence of an outer
interface of the interpreter. Thus language-processing activity of an interpreter cannot
be separated from its program execution activities. Hence we can say that interpreter
executes a program written in a programming language. In essence, the execution gap
vanishes. Following figure depicts the program interpretation model.

Translator

Errors

m/c language
program

Source
program

Data

Target
program

PC

Source
Program
 +
 Data

Interpreter

Errors

Memory

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 37

 Characteristics of the program translation model are:

• A program must be translated before it can be executed.

• The translated program may be saved in a file. The saved program may be
executed repeatedly.

• A program must be retranslated following modifications.
 Characteristics of the program interpretation model:

• The source program is retained in the source form itself i.e. no target program
form exists.

• A statement is analyzed during its interpretation.

Q.39. Explain the differences between macros and subroutines. (4)

 Ans:

 Macros Vs Subroutines
(i) Macros are pre processor directives i.e. it is processed before the source

program is passed to the compiler.
 Subroutines are blocks of codes with a specific task, to be performed and are

directly passed to the compiler.
(ii) In a macro call the pre processor replaces the macro template with its macro

expansion, in a literal way.
As against this, in a function call the control is passed to a function along with

certain arguments, some calculations are performed in the function and a useful
value is returned back from the function.

(iii) Macro increases the program size. For example, if we use a macro hundred
times in a program, the macro expansion goes into our source code at hundred
different places. Whereas, functions make the program smaller and compact. For
example, if a function is used, the even if it is called from hundred different places
in the program, it would take the same amount of space in the program.

(iv) Macros make the program run faster as they have already been expanded and
placed in the source code before compilation. Whereas, passing arguments to a
function and getting back the returned values does take time and would therefore
slow down the program.

(v) Example of macro
#define AREA(x) (3.14*x*x) // macro definition

main(){

 float r1=6.25, r2=2.5, a;

 a=AREA(r1); // expanded to (3.14 * r1 * r1)

 printf(“\n Area of circle =%f”,a);

 a=AREA(r2); // // expanded to (3.14 * r2 * r2)

 printf(“\n Area of circle= %f”,a);}

Example of subroutine

main(){

 float r1=6.25, r2=2.5, a;

 a=AREA(r1); // calls AREA()

 printf(“\n Area of circle =%f”,a);

 a=AREA(r2); // calls AREA()

 printf(“\n Area of circle= %f”,a);}

float AREA(float r) // subroutine{

 return 3.14*r*r;}

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 38

Q.40. Explain the stack storage allocation model. (6)

 Ans:

 In stack-based allocation, objects are allocated in last-in, first-out data
structure, a stack.–E.g. Recursive subroutine parameters. The stack storage
allocation model

• Grow and shrink on procedure calls and returns.

• Register allocation works best for stack-allocated objects.

• Memory allocation and freeing are partially predictable.

• Restricted but simple and efficient.

• Allocation is hierarchical: Memory freed in opposite order of allocation. That
is If alloc (A) then alloc (B) then alloc (C), then it must be free(C) then
free(B) then free(A).

Q.41. Give an account of the issue pertaining to compilation of if statement in C language
 (6)

 Ans

 Control structures like if cause significant gap between the PL domain and the
execution domain because the control transfers are implicit rather than explicit. The
semantic gap is bridged in two steps as follows:
1. Control structure is mapped into an equivalent program containing explicit

goto’s. The compiler generates its own labels and put them against the appropriate
statements. For example, the equivalent of (a) given below is (b) where int1, int2
are labels generated by compiler for its own purposes.

 if (e1) then if(e1) then goto int1;
 S1; S2;
 else goto int2;
 S2; int1:S1;
 S3; int2:S3;

(a) (b)

 2. These programs are translated into assembly programs.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 39

Q.42. Differentiate between non-relocatable, relocatable and self relocatable programs.
 (6)

 Ans:

 A non- relocatable program is one that cannot be executed in any memory area
other than the area starting on its translated origin. For example a hand coded
machine language program.
A relocatable program is one that can be processed to relocate it to a desired area of
memory. For example an object module. The difference between a relocatable and
a non-relocatable program is the availability of information concerning the address
sensitive instructions in it. A self-relocating program is the one that can perform
the relocation of its own address sensitive instructions. A self-relocating program

can execute in any area of memory. This is very important in time-sharing
operating system where load address of a program is likely to be different for
different executions.

Q.43. Explain briefly any three of the commonly used code optimisation techniques.
 (6)

Ans:
1.Common sub expression elimination:
 In the expression "(a+b)-(a+b)/4", "common sub expression" refers to the duplicated
"(a+b)". Compilers implementing this technique realize that "(a+b)" won't change, and
as such, only calculate its value once and use the same value next time.
2.Dead code Elimination:

Code that is unreachable or that does not affect the program (e.g. dead stores) can be
eliminated. In the example below, the value assigned to i is never used, and the dead
store can be eliminated. The first assignment to global is dead, and the third assignment
to global is unreachable; both can be eliminated.
int global;

void f (){

 int i;

 i = 1; /* dead store */

 global = 1; /* dead store */

 global = 2;

 return;

 global = 3; /* unreachable */}

 Below is the code fragment after dead code

elimination.

int global;

void f (){

 global = 2;

 return;}

 3. Loop-invariant code motion
 If a quantity is computed inside a loop during every iteration, and its value is the
same for each iteration, it can vastly improve efficiency to hoist it outside the loop and
compute its value just once before the loop begins. This is particularly important with
the address-calculation expressions generated by loops over arrays. For correct
implementation, this technique must be used with loop inversion, because not all code

is safe to be hoisted outside the loop.
for example:

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 40

for (i=1; i≤10, i++){

x=y*2-(1)

.

.

.

}

statement 1 can be hoisted outside the loop assuming value of x and y does not change
in the loop.

Q.44. Write short notes on:
i. YACC.

ii. Debug monitors. (8)

 Ans:

 (i)YACC stands for “Yet another Compiler-Compiler” : Computer program input
generally has some structure; in fact, every computer program that does input can be
thought of as defining an “input language” which it accepts. An input language may be
as complex as a programming language, or as simple as a sequence of numbers.
Unfortunately, usual input facilities are limited, difficult to use, and often are lax about
checking their inputs for validity.
YACC provides a general tool for describing the input to a computer program. The
YACC user specifies the structures of his input, together with code to be invoked as
each such structure is recognized. YACC turns such a specification into a subroutine
that handles the input process; frequently, it is convenient and appropriate to have most
of the flow of control in the user's application handled by this subroutine. The output
from YACC is LALR parser for the input programming laughing
(ii)Debug monitors provide debugging support for a program. A debug monitor
executes the program being debugged under its own control thereby providing
execution efficiency during debugging. There are debug monitors that are language
independent and can handle programs written in many languages. For example-DEC-
10. Debug monitor provide the following facilities for dynamic debugging:
1. Setting breakpoints in the program
2. Initiating a debug conversation when control reaches a breakpoint.
3. Displaying values of variables
4. Assigning new values to variables.
5. Testing user defined assertions and predicates involving program variables.

Q.45. What is an operating system? List the typical functions of operating systems. (4)

Ans:

An operating system is system software that provides interface between user and
hardware. The operating system provides the means for the proper use of resources
(CPU, memory, I/O devices, data and so on) in the operation of the computer system.
An operating system provides an environment within which other programs can do
useful work.
Typical functions of operating system are as follows:
(1)Process management: A process is a program in execution. It is the job, which is
currently being executed by the processor. During its execution a process would
require certain system resources such as processor, time, main memory, files etc.
OS supports multiple processes simultaneously. The process management module of

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 41

the OS takes care of the creation and termination of the processes, assigning resources
to the processes, scheduling processor time to different processes and communication
among processes.
(2)Memory management module: It takes care of the allocation and deallocation of
the main memory to the various processes. It allocates main and secondary memory to
the system/user program and data. To execute a program, its binary image must be
loaded into the main memory.
Operating System decides.
(a) Which part of memory are being currently used and by whom.
(b) which process to be allocated memory.
(c) Allocation and de allocation of memory space.
(3)I/O management: This module of the OS co-ordinates and assigns different I/O
devices namely terminals, printers, disk drives, tape drives etc. It controls all I/O
devices, keeps track of I/O request, issues command to these devices.
I/O subsystem consists of
(i) Memory management component that includes buffering, caching and spooling.
(ii) Device driver interface
(iii) Device drivers specific to hardware devices.
(4)File management: Data is stored in a computer system as files. The file
management module of the OS would manage files held on various storage devices
and transfer of files from one device to another. This module takes care of creation,
organization, storage, naming, sharing, backup and protection of different files.
(5)Scheduling: The OS also establishes and enforces process priority. That is, it
determines and maintains the order in which the jobs are to be executed by the
computer system. This is so because the most important job must be executed first
followed by less important jobs.
(6)Security management: This module of the OS ensures data security and integrity.
That is, it protects data and program from destruction and unauthorized access. It
keeps different programs and data which are executing concurrently in the memory in
such a manner that they do not interfere with each other.
(7)Processor management: OS assigns processor to the different task that must be
performed by the computer system. If the computer has more than one processor idle,
one of the processes waiting to be executed is assigned to the idle processor.
OS maintains internal time clock and log of system usage for all the users. It also
creates error message and their debugging and error detecting codes for correcting
programs.

Q.46. What are interrupts? How are they handled by the operating system? (5)
 Ans:

Interrupt: An interrupt is a hardware mechanism that enables an external device,
typically I/O devices, to send a signal to the CPU. An interrupt signal requests the
CPU to interrupt its current activities and attend to the interrupting device’s needs. A
CPU will check interrupts only after it has completed the processing of one
instruction and before it fetches a subsequent one. The basic interrupt mechanism
works as follows:
The CPU hardware has wire called the interrupt-request line that the CPU senses after
executing instruction. The device controller raises an interrupt by asserting a signal on
the interrupt request line. CPU detects that a controller has asserted a signal on the
interrupt request line.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 42

The CPU saves small amount of state, such as the current value of the instruction
pointer i.e. return address, and jumps to the interrupt handler routine at fixed address
in memory. The interrupt handler determines the cause of the interrupt, performs the
necessary processing, and executes a return from interrupt instruction, thereby
clearing the interrupt. The CPU resumes to the execution state prior to the interrupt.

Q.47. Define process. Describe the contents of a Process Control Block (PCB). (5)

Ans:

Process: A process is a program in execution.
A process is an active entity, represented by the value of the program counter and the
contents of the processor’s registers. A process generally includes the process stack,
which contains temporary data (such as method parameters, return addresses, and
local variables. Two processes (may or may not be associated with the same program)
are two separate execution sequences with its own text and data sections. A process
may spawn many processes as it runs. Process Control Block (PCB): Each process is
represented in the operating system by a process control block or task control block.
It contains many pieces of information associated with a specific process such as:
(1) Process state: The state may be new, ready, running, waiting, halted and so on.

1. Device driver

initiates I/O

4. CPU receiving
interrupt transfers
control to interrupt
handler

2. Initiates I/O

3. Input ready, output
complete or error

Generates Interrupt signal

6. CPU resumes
processing of

interrupted task

5. Interrupt handler
processes data returns

from Interrupt

CPU
I/O controller

Figure: Interrupt-driven I/O cycle

CPU executing checks for interrupts

between instructions

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 43

(2) Program counter: The counter indicates the address of the next instruction to be
executed for this process.
(3) CPU registers: The registers vary in number and type, depending on the computer
architecture. They include accumulators, index registers, stack pointers and general-
purpose registers, plus any condition-code information. Along with the program
counter, this state information must be saved when and interrupt occurs, to allow the
process to be continued correctly afterward.

Pointer Process state

Process number

Program counter

Registers

Memory units

List of open files

.

.

.

 Figure: Process Control Block(PCB)

(4) CPU-scheduling information: This information includes a process priority,
pointers to scheduling queues, and any other scheduling parameters.
(5) Memory-management information: This information may include such
information as the value of the base and limit registers, the page tables, or the segment
tables, depending on the memory system used by the OS.
(6) Accounting information: This information includes the amount of CPU and real
time used, time limits, account numbers, job or process numbers and so on.
(7) I/O status information: The information includes the list of I/o devices allocated
to this process, a list of open files, and so on.
The PCB simply serves as the repository for any information that may vary from
process to process

Q48. What are interacting processes? Explain any two methods of implementing
interacting processes. (8)

 Ans:

Interacting processes: The concurrent processes executing in the operating system
are interacting or cooperating processes if they can be affected by each other.
Any process that shares data with other processes is an interacting process.
Two methods of implementing interacting process are as follows:
(i) Shared memory solution: This scheme requires that these processes share a

common buffer pool and the code for implementing the buffer be written by
the application programmer.
For example, a shared-memory solution can be provided to the bounded-
buffer problem. The producer and consumer processes share the following
variables:
#define BUFFER_SIZE 10

Typedef struct{

 ……….

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 44

}item;

Item buffer[BUFFER_SIZE];

int in=0;

int out=0;

The shared buffer is implemented as a circular array with two logical
pointers: in and out. The variable in points to the next free position in the
buffer; out points to the first full position in the buffer. The buffer is empty
when in==out; the buffer is full when ((in + 1)%BUFFER_SIZE)==out.
The producer process has a local variable nextProduced in which the new
item to be produced is stored:
while(1){

 /* produce and item in nextProduced */

 While(((in + 1)%BUFFER_SIZE)==out)

 ; // do nothing

 Buffer[in]=nextProduced;

 in =(in+1)% BUFFER_SIZE;}

The consumer process has a local variable nextConsumed in which the item
to be consumed is stored:
while(1){

 while(in==out)

 ; //do nothing

 nextConsumed = buffer[out];

 out=(out +1)% BUFFER_SIZE;

/* consume the item in nextConsumed */}

(ii) Inter process Communication: The OS provides the means for cooperating
processes to communicate with each other via an interprocess
communication (IPC) facility. IPC provides a mechanism to allow processes
to communicate and to synchronize their actions without sharing the same
address space. IPC is particularly useful in a distributed environment where
the communicating processes may reside on different computers connected
with a network. IPC is best implemented by message passing system where
communication among the user processes is accomplished through the
passing of messages. An IPC facility provides at least the two operations:
send(message) and receive(message).
Some types of message passing system are as follows:
Direct or Indirect Communication: With direct communication, each process
that wants to communicate must explicitly name the recipient or sender of the
communication. In this scheme, the send and receive primitives are defined
as:

• send(P, message)- Send a message to process P.

• receive(Q, message)- Receive a message from process Q.
A communication link in this scheme has the following properties:

• A link is established automatically between every pair of processes that
want to communicate. The processes need to know only each other’s
identity to communicate.

• A link is associated with exactly two processes.

• Exactly one link exists between each pair of processes.
With indirect communication, the messages are sent to and received from
mailboxes, or ports. Each mailbox has a unique identification. In this scheme,
a process can communicate with some other process via a number of different

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 45

mailboxes. Two processes can communicate only if they share a mailbox. The
send and receive primitives are defined as follows:

• send (A, message)- Send a message to mailbox A

• receive (A, message)- Receive a message from mailbox A.
In this scheme, a communication link has the following properties:

• A link is established between a pair of processes only if both members
of the pair have a shared mailbox.

• A link may be associated with more than two processes.

• A number of different links may exist between each pair of
communicating processes, with each link corresponding to one mailbox.

 Q.49. Consider the following set of jobs with their arrival times, execution time (in

minutes), and deadlines.

Job Ids Arrival Time Execution time Deadline

1 0 5 5

2 1 15 25

3 3 12 10

4 7 25 50

5 10 5 12

 Calculate the mean turn-around time, the mean weighted turn-around time and

the throughput for FCFS, SJN and deadline scheduling
algorithms. (6)

 Ans:
Chart for First Come First Served scheduling

1 2 3 4 5

0 5 20 32 57 62

Turnaround time = Terminated time – Arrival time
i.e, T = Tr - Ta

So, turnaround time for various jobs are
For job 1, T1 = 5-0=5 unit time
For job 2, T2 = 20-1=19 unit time
For job 3, T3 = 32-3=29 unit time
For job 4, T4 = 57-7=50 unit time
For job 5, T5 = 62-10=52 unit time
Mean turnaround time, Tm = (T1+T2+T3+T4+T5)/5= 155/5=31 unit time/job
Throughput= no of process completed per unit time= 5/62= 0.081 jobs/unit time

Chart for Shortest Job Next scheduling

1 3 5 2 4

0 5 17 22 37 62

Turnaround time for various jobs are
For job 1, T1 = 5-0=5 unit time

For job 2, T2 = 37-1=36 unit time

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 46

For job 3, T3 = 17-3=14 unit time
For job 4, T4 = 62-7=55 unit time
For job 5, T5 = 22-10=12 unit time
Mean turnaround time, Tm = (T1+T2+T3+T4+T5)/5= 122/5= 24.4unit time/job
Throughput= no of process completed per unit time= 5/62= 0.081 jobs/unit time

Q.50. What are the differences between user level threads and kernel supported threads?

 (4)

Ans:

 A thread, sometimes called a lightweight process(LWP), is a basic unit of CPU
utilization; it comprises a thread ID, a program counter, a register set and a stack.
A thread shares with other threads belonging to the same process its code section, data
section and other operating-system resources, such as open files and signals.
If the process has multiple threads of control, it can do more than one task at a time.
User Level Threads Vs Kernel Supported Threads

i. User threads are supported above the kernel and are implemented by a
thread library at the user level.
Whereas, kernel threads are supported directly by the operating system.

ii. For user threads, the thread library provides support for thread creation,
scheduling and management in user space with no support from the kernel
as the kernel is unaware of user-level threads. In case of kernel threads, the
kernel performs thread creation, scheduling and management in kernel
space.

iii. As there is no need of kernel intervention, user-level threads are generally
fast to create and manage. As thread management is done by the operating
system, kernel threads are generally slower to create and manage that are
user threads.

iv. If the kernel is single-threaded, then any user-level thread performing
blocking system call, will cause the entire process to block, even if other
threads are available to run within the application.
However, since the kernel is managing the kernel threads, if a thread
performs a blocking system call, the kernel can schedule another thread in
the application for execution.

v. User-thread libraries include POSIX P threads, Mach C-threads and
Solaris 2 UI-threads.

Some of the cotemporary operating systems that support kernel threads are Windows
NT, Windows 2000, Solaris 2, BeOS and Tru64 UNIX(formerly Digital UNIX).

Q.51. Define deadlock? Explain the necessary conditions for deadlock to occur. (5)

Ans:

Deadlock is a situation, in which processes never finish executing and system
resources are tied up, preventing other jobs from starting. A process requests
resources; if the resources are not available at that time, the process enters a wait
state. Waiting processes may never again change state, because the resources they
have requested are held by other waiting processes, thereby causing
deadlock.Necessary conditions for deadlock to occur are:
i. Mutual exclusion: At least one resource must be held in a nonsharable mode;
that is, only one process at a time can use the resource. If another process requests

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 47

that resource, the requesting process must be delayed until the resource has been
released.
ii. Hold and wait: A process must be holding at least one resource and waiting
to acquire additional resources that are currently being held by other processes.
iii. No pre-emption: Resources cannot be pre-empted; that is, a resource can be
released only voluntarily by the process holding it, after the process holding it has
completed its task.
iv. Circular wait: A set{P0, P1,……, Pn) of waiting processes must exist such
that P0 is waiting for a resource that is held by P1, P1 is waiting for a resource that is
held by P2, ……., Pn-1 is waiting for a resource that is held by Pn and Pn is waiting
for a resource that is held by P0.
All four conditions must hold simultaneously for a deadlock to occur and conditions
are not completely independent. For example, the circular-wait implies the hold-and-
wait condition.

 Q52. An operating system contains 3 resource classes. The number of resource units in
these classes is 7, 7 and 10. The current resource allocation state is shown below:

Processes
Allocated resources Maximum requirements

R1 R2 R3 R1 R2 R3

P1 2 2 3 3 6 8

P2 2 0 3 4 3 3

P3 1 2 4 3 4 4

 (i) Is the current allocation state safe?
(ii) Can the request made by process P1 (1, 1, 0) be granted? (5)

 Ans:

 (i) In the given question,
Available matrix for resources [R1 R2 R3] = No of resource unit -Total
Allocation = [7 7 10]-[5 4 10]= [2 3 0]
Need matrix is defined as (Max – Allocation),

Processes Need of resources

R1 R2 R3
P1 1 4 5

P2 2 3 0

P3 2 2 0

Using Safety Algorithm, we get sequence:

Processes Available resources
after satisfying need

R1 R2 R3

2 3 0
P2 4 3 3

P3 5 5 7

P1 7 7 10

The sequence <P2, P3, P1> satisfies the safety criteria. So current allocation
state is safe.

(ii) Request made by process P1, Request(P1)= [1 1 0]
Here, Request(P1)< Need(P1) < Available
 i.e. [1 1 0]< [1 4 5] < [2 3 0]
Pretending that request can be fulfilled, we get new state:

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 48

Processes Allocation Need Available
R1 R2 R3 R1 R2 R3 R1 R2 R3

P1 3 3 3 0 3 5 1 2 0

P2 2 0 3 2 3 0

P3 1 2 4 2 2 0

As Need > Available for all process, no need can be fulfilled
So allocation is not thread safe i.e. request made by Process P1 can’t be
granted.

Q.53. What are semaphores? How do they implement mutual exclusion? (6)

Ans:
Semaphore: A semaphore is a synchronization tool that provides a general-purpose
solution to controlling access to critical sections. A semaphore is an abstract data type
(ADT) that defines a nonnegative integer variable which, apart from initialization, is
accessed only through two standard operations: wait and signal. The classical definition
of wait in pseudo code is

 wait(S){

 while(S<=0)

 ; // do nothing

 S--; }

The classical definitions of signal in pseudo code is

 signal(S){

 S++; }

When one process modifies the semaphore value, no other process can simultaneously
modify that same semaphore value. In addition, in the case of the wait(S), the testing
of the integer value of S(S<=0), and its possible modification(S--), must also be
executed without interruption.
Mutual-exclusion implementation with semaphores:

Let there are n-processes and they share a semaphore, mutex (standing for mutual
exclusion), initialized to 1.Each process Pi is organized as shown below:

 do{
 wait(mutex);

 critical section

 signal(mutex);

 remainder section }while(1);
Disadvantage: Mutual-exclusion solutions given by semaphores require busy waiting.
That is, while a process is in its critical section, any other process that tries to enter its
critical section must loop continuously in the entry code. Hence, busy waiting wastes
CPU cycles that some other process might able to use productively.
Advantage: This type of semaphore is also called spinlock because the process “spins”
while waiting for the lock. Spinlocks are useful in multiprocessor systems as no context
switch is required when a process must wait on a lock. Thus, when locks are expected
to be held for short times, spinlocks are useful.

Q.54. Give a solution for readers-writers problem using conditional critical regions. (8)

 Ans:

Readers-writers problem: Let a data object(such as a file or record) is to be shared
among several concurrent processes. Readers are the processes that are interested in
only reading the content of shared data object. Writers are the processes that may want

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 49

to update (that is, to read and write) the shared data object. If two readers access the
shared data object simultaneously, no adverse effects will result. However if a writer
and some other process (either a reader or writer) access the shared object
simultaneously, anomaly may arise. To ensure that these difficulties do not arise,
writers are required to have exclusive access to the shared object. This synchronization
problem is referred to as the readers-writers problem.
Solution for readers-writers problem using conditional critical regions. Conditional
critical region is a high level synchronization construct. We assume that a process
consists of some local data, and a sequential program that can operate on the data. The
local data can be accessed by only the sequential program that is encapsulated within
same process. One process cannot directly access the local data of another process.
Processes can, however, share global data.
Conditional critical region synchronization construct requires that a variable v of type
T, which is to be shared among many processes, be declared as
 v: shared T;
The variable v can be accessed only inside a region statement of the following form:
 region v when B do S;
This construct means that, while statement S is being executed, no other process can
access the variable v. When a process tries to enter the critical-section region, the
Boolean expression B is evaluated. If the expression is true, statement S is executed. If
it is false, the process releases the mutual exclusion and is delayed until B becomes
true and no other process is in the region associated with v.
Now, let A is the shared data object.
Let readcount is the variable that keeps track of how many processes are currently
reading the object A.
Let writecount is the variable that keeps track of how many processes are currently
writing the object A. Only one writer can update object A, at a given time.
Variables readcount and writecount are initialized to 0.
A writer can update the shared object A when no reader is reading the object A.
 region A when(readcount = = 0 AND writecount = = 0){

 ……

 writing is performed

 …… }

A reader can read the shared object A unless a writer has obtained permission to update
the object A.

 region A when(readcount >=0 AND writecount = = 0){

 ……

 reading is performed …… }

Q.55. Given memory partitions of 100k, 500k, 200k, 300k, and 600k (in order), apply first
fit and best fit algorithms to place processes with the space requirement of 212k,
417k, 112k and 426k (in order)? Which algorithm makes the most effective use of
memory? (3)

Ans:

Given memory partitions of 100k, 500k, 200k, 300k, and 600k (in order), applying
first fit algorithms to place processes with the space requirement of 212k, 417k, 112k
and 426k (in order), we have the following status:

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 50

Memory

Request

100K 500K 200K 300K 600K

212K 100K 288K 200K 300K 600K

417K 100K 288K 200K 300K 183K

112K 100K 176K 200K 300K 183K

426K Can’t fulfil request of 426K,so memory status will
remain same

 And applying best fit algorithm the status is as follows:

 Memory

Request

100K 500K 200K 300K 600K

212K 100K 500K 200K 88K 600K

417K 100K 83K 200K 88K 600K

112K 100K 83K 88K 88K 600K

426K 100K 83K 88K 88K 174K

 Best fit makes the most efficient use of memory.

Q.56. Differentiate between

(i) Problem-oriented and procedure-oriented language

(ii) Dynamic and static binding

(iii) Scanning and parsing (9)

 Ans:

(i) Problem-oriented and procedure-oriented language: The programming
languages that can be used for specific applications are called problem oriented

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 51

languages. Such languages have large execution gaps and this gap is bridged by
the translator or interpreter and does not concern the software designer.
A procedure-oriented language provides general purpose facilities required in
most application domains. Such a language is independent is independent of
specific application domains and results in a large specification gap which has
to be bridged by an application designer.
(ii) Dynamic and static binding: A dynamic binding is a binding performed
after the execution of a program has just begun while static binding is a binding
performed before the execution of a program begins.

 Static bindings lead to more efficient execution of a program than dynamic
bindings.
(iii) Scanning and parsing: Scanning is the process of recognizing the lexical
components in a source string while parsing is the process of checking the
validity of a source string, and to determine its syntactic structure. The reason
for separating scanning from parsing is that the lexical features of a language
can be specified using Type-3 grammars. Each Type-3 production specifying
lexical components is also a Type-2 production. However, a recognizer for
Type-3 productions is simple, easier to build and more efficient during
execution than a recognizer for Type-2 productions. Hence it is better to handle
the lexical and syntactic components of a source language separately.

Q.57. Define Grammar of a language. Identify the different classes of grammar.
 Explain their characteristics and limitations. (10)

Ans:A formal language grammar is a set of formation rules that describe which
strings formed from the alphabet of a formal language are syntactically valid,
within the language. A grammar only addresses the location and manipulation of
the strings of the language. It does not describe anything else about a language,
such as its semantics.
 As proposed by Noam Chomsky, a grammar G consists of the following
components:

• A finite set N of non terminal symbols.

• A finite set Σ of terminal symbols that is disjoint from N.

• A finite set P of production rules, each rule of the form

where
*
 is the Kleene star operator and denotes set union. That is, each production

rule maps from one string of symbols to another, where the first string contains at
least one non terminal symbol.
A distinguished symbol that is the start symbol. The Chomsky hierarchy consists
of the following levels:
• Type-0 grammars (unrestricted grammars) include all formal grammars.
They generate exactly all languages that can be recognized by a Turing machine.
The language that is recognized by a Turing machine is defined as all the strings
on which it halts. These languages are also known as the recursively enumerable
languages.
• Type-1 grammars (context-sensitive grammars) generate the context-
sensitive languages. These grammars have rules of the form αAβ → αγβ with A a
non terminal and α, β and γ strings of terminals and non terminals. The strings α
and β may be empty, but γ must be nonempty. The rule S → ε is allowed if S does
not appear on the right side of any rule. The languages described by these
grammars are exactly all languages that can be recognized by a non-deterministic

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 52

• Type-2 grammars (context-free grammars) generate the context-free
languages. These are defined by rules of the form A → γ with A a non terminal
and γ a string of terminals and non terminals. These languages are exactly all
languages that can be recognized by a non-deterministic pushdown automaton.
Context free languages are the theoretical basis for the syntax of most
programming languages.
• Type-3 grammars (regular grammars) generate the regular languages. Such a
grammar restricts its rules to a single non terminal on the left-hand side and a
right-hand side consisting of a single terminal, possibly followed by a single non
terminal. The rule S → ε is also here allowed if S does not appear on the right side
of any rule. These languages are exactly all languages that can be decided by a
finite state automaton. Additionally, this family of formal languages can be
obtained by regular expressions. Regular languages are commonly used to define
search patterns and the lexical structure of programming languages.

Q.58. Enumerate the data structures used during the first pass of the assembler.
 Indicate the fields of these data structures and their purpose/usage. (8)

Ans:

 Three major data structures used during the first pass of the assembler are:
 - LOCCTR (Location counter)
 - OPTAB (operation code table)
 - SYMTAB (Symbol table)
 LOCCTR: Location Counter keeps track machine addresses of symbolic

tables.
 - Initialized by START.
 - Increased for each instruction

o Pseudo Instruction: BYTE, WORD,RESB, RESW.
o Machine Instruction: Fixed length (3 bytes) for SIC, variable length for
SIC/XE (looking up OPTAB).
o Assign the value (address) of LOCCTR to corresponding symbol table.
OPTAB: operation table contains mnemonic operation code and its machine
language equivalent.

 OPTAB can be implemented using hashing function for fast access.
 SYMTAB: Symbol table maintain symbolic label, operand and their
 corresponding machine.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 53

Addresses

 •SYMTAB is dynamic, constructed during Pass 1:
o for symbolic label, fill in symbol and address (according to current LOCCTR).
o for symbolic operand, fill in symbol and mark it as undefined. Address field

will be defied later.
 •SYMTAB can be implemented using hashing function for fast access.

Q.59. What is macro-expansion? List the key notions concerning macro expansion. Write
 an algorithm to outline the macro-expansion using macro-expansion counter. (8)

Ans:

macro call leads to macro expansion. During macro expansion, the macro call
statement is replaced by a sequence of assembly statements. Two key notions
concerning macro expansion are:
1.Expansion time control flow- this determines the order in which model

statements are visited during macro expansion.
2.Lexical substitution: Lexical substitution is used to generate an assembly

statement from a modal statement.
The flow of control during macro expansion can be implemented using a macro-
expansion counter (MEC). The outline of algorithm is as follows:

1. MEC:=statement number of first statement following the prototype
statement;
2. While statement pointed by MEC is not a MEND statement

(a) If a model statement then
(i) expand the statement.
(ii) MEC:=MEC+1;

(b) Else (i.e. a pre processor statement)
(i) MEC:=new value specified in the statement;

 3. Exit from macro expansion.

Q.60 What is a heap? Name and explain the popular techniques to identify free memory
 areas as a result of allocation and de-allocations in a heap. (8)

Ans:

The heap is an area of memory, which is dynamically allocated. Like a stack, it may
grow and shrink during runtime. Unlike a stack, a heap is not LIFO implies more
complicated to manage. Two popular techniques to identify free memory areas as a
result of allocation and de-allocations in a heap are:
1. Reference count: the system associates a reference count with each memory
area to indicate the number of its active users. This number is incremented when a

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 54

user accesses that area and decrements when user stops using that. The area is free
if the reference counts drops to zero. This scheme is very simple to implement
however incurs incremental overheads.
2. Garbage collection: In this technique two passes are made over the memory to
identify unused areas. In the first pass it traverses all pointers pointing to allocated
areas and marks the memory areas that are in use. The second pass finds all
unmarked areas and declares them to be free. The garbage collection overheads are
not incremental. They are incurred every time the system runs out of free memory
to allocate to fresh requests.

Q.61. What are threads? Why are they required? Discuss the differentiate between Kernel

level and user level threads? (8)

 Ans:

A thread, sometimes called a lightweight process(LWP), is a basic unit of CPU
utilization; it comprises a thread ID, a program counter, a register set and a stack.
A thread shares with other threads belonging to the same process its code section,
data section and other operating-system resources, such as open files and signals.
If the process has multiple threads of control, it can do more than one task at a time.

User Level Threads Vs Kernel Supported Threads
i. User threads are supported above the kernel and are implemented by a thread

library at the user level.
Whereas, kernel threads are supported directly by the operating system.

ii. For user threads, the thread library provides support for thread creation,
scheduling and management in user space with no support from the kernel as
the kernel is unaware of user-level threads.
In case of kernel threads, the kernel performs thread creation, scheduling and
management in kernel space.

iii. As there is no need of kernel intervention, user-level threads are generally fast
to create and manage.
As thread management is done by the operating system, kernel threads are
generally slower to create and manage that are user threads.

iv. If the kernel is single-threaded, then any user-level thread performing
blocking system call, will cause the entire process to block, even if other
threads are available to run within the application.
However, since the kernel is managing the kernel threads, if a thread performs
a blocking system call, the kernel can schedule another thread in the application
for execution.

v. User-thread libraries include POSIX P threads, Mach C-threads and Solaris 2
UI-threads.
Some of the cotemporary operating systems that support kernel threads are
Windows NT, Windows 2000, Solaris 2, BeOS and Tru64 UNIX(formerly
Digital UNIX).

Q.62. What is swapping? Does swapping increase the Operating Systems’ overheads?

Justify your answer. (8)

 Ans:

A process can be swapped temporarily out of memory to a backing store, and
then brought back into memory for continued execution.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 55

Major part of swap time is transfer time; total transfer time is directly proportional to
the amount of memory swapped. Modified versions of swapping are found on many
systems, i.e., UNIX, Linux, and Windows.

Q.63. Suppose there are 2 copies of resource A, 3 copies of resource B, and 3 copies of
resource C. Suppose further that process 1 holds one unit of resources B and C and
is waiting for a unit of A; that process 2 is holding a unit of A and waiting on a unit
of B; and that process 3 is holding one unit of A, two units of B, and one unit of C.
Draw the resource allocation graph. Is the system in a deadlocked state? Why or
why not? (8)

Ans:

 Resource allocation graph is given below:

 There is a cycle in the resource allocation graph implies system is not in a safe state.
System is in deadlock as required resources are 1 unit of resource A and 1 unit of
resource B while available resource is 1 unit of resource C. None of the process can
be completed.

P1

P2

P3

A
B C

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 56

Q.64 what is system programming? Explain the evolution of system software. (6)

Ans:

 System software is collection of system programs that perform a variety of
functions, viz file editing, recourse accounting, IO management, storage management
etc.
System programming is the activity of designing and implementing SPs.
System programs which are the standard component of the s/w of most computer
systems; The two fold motivation mentioned above arises out of single primary goal
viz of making the entire program execution process more effective.

Q.65 Give difference between assembler, compiler and interpreter. (6)

Ans:

An assembler is the translator for an assembly language of a computer. An assembly
language is a low-level programming language which is peculiar to a certain
computer.
A compiler is a translator for machine independent HLL like say FORTRAN,
COBOL etc.
An interpreter analysis the source program statement by statement and it self carries
out the actions implied by each statement.

Q.66 Write down the general model for the translation process. (4)

 Ans:

 General model for the translation process can be represented as follows:

Q.67 Pass I of the assembler must also generate the intermediate code for the processed

statements. Justify your answer. (8)

Ans: Criteria for selection of an appropriate intermediate code form are;
 (i) Ease of use: It should be easy to construct the intermediate code form and also easy
to analyze and interpret it during pass II, i.e. the amount of processing required to be
done during its construction and analysis should be minimal.
(ii) Economy of storage: It should be compact as the target code itself .This will reduce
the overall storage requirements of assembler.

Q.68 what are the advantages and disadvantages of macro pre-processor? (8)

Ans: The advantage of macro pre-processor is that any existing conventional
assembler can be enhanced in this manner to incorporate macro processing. It would
reduce the programming cost involved in making a macro facility available.
The disadvantage is that this scheme is probably not very efficient because of the
time spent in generating assembly language statement and processing them again for
the purpose of translation to the target language.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 57

Q.69. What is parsing? Give difference between top down parsing and bottom up parsing. (6)

Ans:

 The goal of parsing is to determine the syntactic validity of a source string. If
the string is valid, a tree is built for use by subsequent phase of compiler.
Top down parsing: Given an input string, top down parsing attempts to derive a
string identical to it by successive application of grammar rules to the grammar’s
distinguished symbol. When such a string is obtained , a tree representing its
derivation would be the syntax tree for an input string. Thus if ά is input-string, a top
down parse determines a derivation sequence.

Bottom up parsing: A bottom up parse attempts to develop syntax tree for an input
string through a sequence of reduction. If the input string can be reduced to the
distinguished symbol, the string is valid. If not, error would be detected and indicated
during the process of reduction itself.

Q.70 How non-relocatable programs are different from relocatable programs? (4)

Ans: A non relocatable program is one which cannot be made to execute in any area
of storage other than the one designated for it at the time of its coding or translation.
A relocatable program form is one which consists of a program and relevant
information for its relocation. Using this information it is possible to relocate the
program to execute from a storage area then the one designated for it at the time of its
coding or translation.

Q.71 what are the fundamental steps in program development? Discuss program testing and

debugging in detail. (6)

Ans:

 The fundamental steps in program development are:

 (i) Program design, coding and documentation.
 (ii) Preparation of the program in machine readable form, and initial editing to

adopt two required formats.
 (iii) Program translation and linking/ loading
 (iv) Program testing and debugging.
 (v) Program modification for performance enhancement.

 (vi) Reformatting programs data and/or results to suite other programs which
process them.

 In program testing and debugging important steps are as follows:

 (i) Construction of test data for the program
 (ii) Analysis of test results to detect program errors.
 (iii) Localization of errors and modification of the program to eliminate them, i.e.

debugging.

Q.72 Give LOAD-STORE optimization based on expression trees for the expression
 (A+B)/(C-D) (8)

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 58

Ans:

Load A LOAD C

ADD B SUB D

STORE TEMP STORE TEMP1

LOAD C LOAD A

SUB D ADD B

STORE TEMP2 DIU TEMP1

LOAD TEMP1

DIU TEMP2

Q.73 Draw a simple schematic for managing dynamic storage allocation. (8)

Ans:

Block size pointer

A(code)

A SA B(code)

B SB C(code)

C SC A(data)

Black descriptor table
B(data)

 •

A simple schematic for
managing dynamic storage

allocation

Free area
pointer

Q.74. Differentiate between synchronous and asynchronous input / output with the help of
an example. (8)

Ans: The I/O operation is asynchronous input output operation because after the start
of input/output, control is returned to the user program without waiting for the
input/output to complete. The input/output continues and on its completion, an
interrupt is generated by the controller to attain CPU’s attention.
CPU execution waits, while I/O proceeds, in which case, there is a possibility that at
most one request I/O request is outstanding at a time. This is known as synchronous
I/O.

Q.75. List the major activities of an operating system with respect to memory management,

secondary storage management and process management. (8)

 Ans:

 Operating system is responsible for following activities in connection with
management of memory;

 (i) Allocation and de allocation of memory as and when needed

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 59

 (ii) Keeping track of used and unused memory space.
 (iii) Deciding what process to be loaded into memory in case space becomes
 available.
 For secondary space management:

 (i) Swap space and free space management
 (ii) Disk scheduling
 (iii) Allocating space to the data and programs onto the secondary storage device.
 For process management:

 (i) Creation, deletion of both user and system process.
 (ii) Handling process synchronization.
 (iii) Deadlock handling.

Q.76. What are the disadvantages of FCFS scheduling algorithm as compared to shortest

job first (SJF) scheduling? (8)

 Ans:

 Disadvantages:

 (i) Waiting time can be large if short requests wait behind the long ones.
 (ii) It is not suitable for time sharing systems where it is important that each user
 should get the CPU for an equal amount of time interval.
 (iii) A proper mix of jobs is needed to achieve good results from FCFS scheduling.

Q.77 Explain deadlock detection algorithm for single instance of each resource type. (8)

 Ans:

 (i) Maintain a wait: nodes in a graph represent process. If process i is waiting for
resource hold by process j. Then there is an edge from I to j.

 (ii) Periodically invokes an algorithm that searches for cycles in the graph. If there is

a cycle in the wait-for-graph a dead lock is said to be exist in the system.

Q.78 Discuss the concept of segmentation? What is the main problem with segmentation?

(8)

Ans:

Segmentation is techniques for the non contiguous storage allocation. It is different
from paging as it supports user’s view of his program.
Problem with segmentation

(i) Is with paging, this mapping requires two memory references per logical address,
which slows down the computer system by a factor of two. Caching is the method
used to solve this problem.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 60

(ii) Problem of external fragmentation.

Q79. What is the difference between absolute and relative path name of a file? (8)

Ans:

Absolute path name:

It is listing of the directories and files from the root directory to the intended file.
Relative path name :

A user can specify a path particular directory as his current working directory and
all the path names instead of being specified from the root directory are specified
relative to the working directory.

Q.80. Describe language processing activities? (8)

Ans:

There are two different types of language processing activities:
1. Program generation activities
2. Program execution activities
Program generation activities: A program generation activity aims at automatic
generation of a program. The source language is a specification language of an
application domain and the target language is typically a procedure oriented
programming language. the following figure shows program generation activity

The program generator is a software system which accepts the specification of a
program to be generated and generates a program in the target. PL. The program
generator introduces a new domain between the application and PL domains. We call
this the program generator domain. The specification gab is now gab between the
application domain and the program generator domain. This gab is smaller than the gab
between the application domain and PL domain.
Program execution activities: A program execution activity organizes system. Two
model program executions are:
1. Translation 2. Interpretation

Translation: The program translation models bridges execution gap by translating a
program written in a PL, called the source program into an equivalent program in the
machine or assembly language of the computer system.

Interpretation: The interpreter reads the source program and stores it in its memory.
During interpretation it takes a statement, determines its meaning and performs
actions which implement it.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 61

Q.81 Explain the criteria to classify data structures used for language processors? (8)

Ans:

The data structures used in language processing can be classified on the basis of the
following criteria:
1. Nature of data structure (whether a linear or non-linear data structure)
2. Purpose of a data structure (whether a search data structure or an allocation data
structure)
3. Life time of a data structure (whether used during language processing or during
target program execution)
A linear data structure consists of a linear arrangement of elements in the memory. A
linear data structure requires a contiguous area of memory for its elements. This poses
a problem in situations where the size of a data structure is difficult to predict. the
elements of non linear data structures are accessed using pointers. Hence the elements
need not occupy contiguous area of memory.
Search Data structures are used during language processing to maintain attribute
information concerning different entities in the source program. In this the entry for
an entity is created only once, but may be searched for large number of times.
Allocation data structures are characterized by the fact that the address of memory
area allocated to an entity is known to the users. So no search operations are
conducted.

Q.82 Explain macro definition, macro call and macro expansion? (6)

 Ans :

A unit of specification for a program generation is called a macro. It consists of name,
set of formal parameters and body of code. When a macro name is used with a set of
actual parameters it is replaced by a code generated from its body. This code is called
macro expansion. There are two types of expansions:
1. lexical expansion
2. Semantic expansion
Lexical expansion: It means a replacement of character string by another string
during program generation. It is generally used to replace occurrences of formal
parameters by corresponding actual ones.
Semantic Expansion: It implies generation of instructions build to the requirements
of specific usage. It is characterized by the fact that different uses of a macro can lead
to codes which differ in the number, sequence and opcodes of instructions.
The macro definition is located at the beginning of the program is enclosed between a
macro header and macro end statement.
A macro statement contains macro name and parameters

< macro name > { < parameters>}
A macro call: A macro is called by writing the macro name in the mnemonic field of
an assembly statement.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 62

Q.83. What are the advantages of code optimization? Explain optimizing transformations?
(10)

 Ans:

Code optimization aims at improving the execution efficiency of a program. This is
achieved in two ways. Redundancies in a program are eliminated and computations in a
program are rearranged to make it execute efficiently. The optimized program occupies
25 percent less storage and execute three times as fast as the unoptimized program.
Optimizing transformations:
An optimizing transformation is a rule for rewriting a segment of a program to improve
its execution efficiency without affecting its meaning.
Commonly used optimizing transformations are
(i) Compile time evaluation: Execution efficiency can be improved by performing
certain action specified in a program during compilation itself. Constant folding is the
main optimization of this kind. When all operands in an operation are constants, the
operation can be performed at compilation time.
For Example: a: =3.141557/2 can be replaced by a:=1.570785 eliminating a division
operation.
(ii) Elimination of common subexpressions:

Common subexpressions are occurrences of expressions yielding the same value.
For Example: a:=b*c t: = b*c

 λ: = b*c + 5.2 a: = t
 λ: = t + 5.2

(iii) Dead code elimination: Code which can be omitted from a program without
affecting its results is called dead code. For example An assignment statement x: = <
exp > constitutes dead code if the value assigned to x is not used in the program.
(iv)Frequency and strength reduction:

Execution time of a program can be reduced by moving code from a part of a
programs which is executed very frequently to another part of the program which is
executed fewer times.
The strength reductions replaces the occurrance of a time consuming operation by an
occurrance of a faster operation.

Q.84 Explain the following terms

(i) Translated address
(ii) Linked address
(iii) Load address

 Explain the relationship amongst these. (6)

Ans:

 (i)Translated address: Address assigned by the translator
 (ii)Linked address: Address assigned by the linker

 (iii)Load time address: Address assigned by the loader.
While compiling a program P, a translator is given an original specification for P.
This is called the translated origin of P. The translator uses the value of the translated
origin to perform memory allocation for the symbols declared in P. This results in the
assignment of a translated time address to each symbol in the program. The origin of a
program may have to be changed by the linker or loader for one of the following
reasons:
1. Object modules of library routines often have the same translated origin so
memory allocation to such programs would conflict unless their origins are changed.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 63

2. Operating system requires a program to be executed from a specific location
so this may require a change in its origin.

Q.85 What are the functions of passes used in two-pass assembler? Explain pass-1
algorithm? (10)

Ans :

Two pass translation of an assembly language program can handle forward references
early.
The following tasks are performed by the passes of a two pass assembler are as
follows:
Pass I: (i) Separate the symbol, mnemonic opcode and operand fields
 (ii) Build the symbol table
 (iii) Perform LC processing
 (iv) Construct intermediate representation.
Pass II: Synthesize the target program
Pass I uses the following data structures:

OPTAB : A table of mnemonic opcodes and related information
SYMTAB: symbol table
LITTAB: A table literally used in the program
OPTAB contains the fields mnemonic opcode, class and mnemonic information. The
class field indicated whether the opcode corresponds to an imperative statement (IS),
a declaration statement (DL) or an assembler directive (AD).
(SYMTAB entry contains the fields address and length. A LITTAB entry contains
literals and address.)

Q.86 What data structure is used by an operating system to keep track of process

information? Explain (4)

 Ans:

A process is a program in execution. An operating system considers a process to be
the fundamental unit for resource allocation. Following resources could be allocated
to a process
(i) Memory (ii) Secondary memory (iii) I/O Devices (iv) files opened by the process
(v) CPU time consumed by process
A data structure called process control block (PCB) is used by an OS to keep track of
all information concerning a process. The PCB of a process contains the following
information.

 Process ID

Priority

Process state

PSR

Registers

Event information

Memory allocation

Resources held

PCB pointer

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 64

(i) Process scheduling information: This information consists of three fields process
ID, priority, process state.
(ii) PSR and machine registers: These fields hold contents of the processor states
register (PSR) and the machine registers when the execution of the process was last
suspended.
(iii) Event information: when a process is in blocked state, this field contains
information concerning the event for which the process is waiting.
(iv) Memory and resource information: This information is useful for the deallocating
memory and resources when the process terminates.
(v) PCB pointer: It is a pointer to the next PCB in the process scheduling list.

Q.87. Categorize the CPU scheduling algorithms? Explain non-pre-emptive algorithms? (4)

Ans

The various CPU scheduling algorithms are classified as follows:

Non preemptive algorithms: In this method a job is given to CPU for execution as long
as the job is non completed the CPU cannot be given to other processes.
There are three types of non preemptive algorithms.
(i) First-come-first-serve (FCFS):

This is simplest CPU scheduling algorithm . With this scheme, the process that
requests the CPU at first is given to the CPU at first. The implementation of FCFS is
easily managed by with a FIFO queue.
(ii) Shortest-job-first (SJF): This is also called SPN (shortest process next). In this the
burst times of all the jobs which are waiting in the queue are compared. The job which
is having the least CPU execution time will be given to the processor at first. In this
turnaround time and waiting times are least. This also suffers with starvation. Indefinite
waiting time is called as starvation. It is complex than FCFS.
(iii) Priority: In this algorithm every job is associated with CPU execution time,
arrival time and the priority. Here the job which is having the higher priority will be
given to the execution at first. This also suffers with starvation. And by using aging
technique starvation effect may be reduced.

Q.88. Differentiate between Batch Operating System and Time Sharing Operating System?

 (6)

 Ans

Batch operating systems: A batch is a sequence of jobs. This batch is submitted to
batch processing operating systems, and output would appear some later time in the
form of a program or as program error. To speed up processing similar jobs are batched
together. The major task of batch operating systems is to transfer control automatically
from one job to next. Here the operating is always in the memory.
(i) It is lack of interaction between user and job while executing
(ii) Turnaround time is more.
(iii) CPU is often idle, because of 1/0 devices are very slow.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 65

Time sharing: Time sharing or multi tasking is a logical execution of
multiprogramming. Multiple jobs are executed by the CPU switching between them.
Here the computer system provides on line communication between the user and the
system.
Here the CPU is never idle. Time shared operating system allows many users to share
the computer simultaneously.
Time sharing systems requires some sort of memory management and protection.

Q.89. What is a Deadlock? Write an algorithm for deadlock detection. (8)

Ans.

Deadlock is a situation, in which processes never finish executing and system
resources are tied up, preventing other jobs form starting.
A process requests resources; if the resources are not available at that time, the
process enters a wait state. Waiting processes may never again change state, because
the resources they have requested are held by other waiting processes, thereby causing
deadlock.

An algorithm for deadlock detection:
1. Let Work and Finish be vectors of length m and n, respectively.

Initialize:

(a) Work = Available

(b) For i = 1,2, …, n, if Allocation i ¹≠≠≠≠ 0, then

 Finish[i] = false; otherwise, Finish[i] = true.

2. Find an index i such that both:

(a) Finish[i] == false

i. (b) Requesti ≤≤≤≤ Work

If no such i exists, go to step 4.

3. Work = Work + Allocationi

 Finish[i] = true

 go to step 2.

4. If Finish[i] == false, for some i, 1 ≤≤≤≤ i ≤≤≤≤ n, then the system

is in deadlock state. Moreover, if Finish[i] == false, then Pi is

deadlocked.

Q 90 Develop a regular expression for
 (i) Integer
 (ii) Real number
 (iii) Real number with optional fraction
 (iv) Identifier (8)

 Ans :

 A regular expression for
 (i) integer is [+ | -] (d)+

 (ii) real number is [+ | -] (d)+. (d)+
 (iii) real number with optional fraction is [+ | -] (d)+. (d)*
 (iv) identifier is l(l | d)*

Q.91. What is critical section problem? Give two solutions for critical section problem? (8)

Ans :

A race condition on a data item arises when many processes concurrently update its
value data consistency, requires that only one process should update the value of a
data item at any time. This ensured through the notion of a critical section.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 66

A critical section for a dataitem d is a section of code, which cannot be executed
concurrently with itself or with other critical section(s) for d.
Consider a system of n processes (P0, P, .Pn-1).
Each process has a segment of code called a critical section, in which the process may
be changing common variables, updating a table, waiting a file and so on. Important
feature of the system is, when one process is executing in its critical section, no other
process is to be allowed to execute its critical section. Thus the execution of critical
sections by the processes is mutually exclusive in time.
A solution to the critical section problem must specify the following requirements.
(i) Mutual exclusion (ii) Progress (iii) Bounded waiting

One solution for critical section problem is provided by semaphores.
Another solution for critical section problems is by Moniters

Q.92. Explain difference between Security and Protection? Describe the scheme of
capability lists to implement protection? (8)

Ans :

Protection mechanism: The following mechanisms are commonly used for
protecting files containing programs and data.
(i) Access controls lists (ACL’s)

(ii) Capability lists (C- lists)

These lists are used to ensure that uses only access files which are explicitly
authorized access. These files include
(i) files created by a user himself/herself
(ii) files owned by others, for which a user process explicit access privileged granted
by other owners.
Security mechanisms: Authentication is the primary security mechanism.
Authentication is the act of verifying the identity of a user. Authentication is typically
performed through passwords at login time. The system stores the password
information in a system as set as pair of the form (user id, password info)
The password information is protected by encryption
C-list: A capability is a file access privilege concerning capabilities possessed by a
user is stored in a capability list. A C-list is a set of pairs{ (file.id, access
privileges),…..}
C-lists are usually small in size. This limits the space and time over heads in using
them to control file accesses. A c-list is a token representing certain access privileges
for an object. An object is any hardware or software entity in the system. A capability
possessed by a process. A process possessing a capability for an object can access the
object in a manner consistent with the access privileges described in the capability.
Thus maintaining C-lists provide:
1. A uniform addressing mechanism for long and short life objects
2. It does not explicitly associate memory with processes. It associates C-lists with
processes.
3. A process may access objects existing anywhere in the system.

Q.93. Explain with the help of examples FIFO and LRU page replacement algorithms? (10)

Ans :

FIFO policy: This policy simply removes pages in the order they arrived in the main
memory. Using this policy we simply remove a page based on the time of its arrival in
the memory.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 67

For example if we have the reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 and 3
frames (3 pages can be in memory at a time per process) then we have 9 page faults as
shown

If frames are increased say to 4, then number of page faults also increases, to 10 in
this case.

LRU policy: LRU expands to least recently use. This policy suggests that we re-
move a page whose last usage is farthest from current time.

Q.94. Describe the necessary conditions for Deadlock. (8)

Ans:
 Necessary conditions for deadlock
 1. Mutual exclusion
 2. Hold and wait
 3. No preemption
 4. Circular wait

Mutual exclusion: The mutual exclusion condition must hold for non sharable
resources. For example, a printer cannot be simultaneously shared by several
processes. Shared resources on the other hand, do not require mutually exclusive
access, and thus cannot be involved in the deadlock. In general, however it is not
possible to prevent deadlocks by denying the mutual exclusion condition.
Hold and wait: To ensure that the hold and wait condition never occurs in the
system, we must guarantee that, whenever a process requests a resource, it does not
hold any other resources. A process may request some resources and use them before
it can request any other resources, however it must release all the resources that it is
currently allocated.
No preemption: The third necessary condition is that there be no preemption of
resources that have already been allocated. If a process that is holding some resources
requests another resource that it cannot be immediately allocated to it. Then all
resources currently being held are preempted.
Circular Wait: One way to ensure that the circular wait condition never holds is to
impose a total ordering of all resources types, and to ensure that each process requests
resources in an increasing order of enumeration.

Q.95 What is a Process Scheduling? Explain the different sub-functions of Process

Scheduling. (8)

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 68

 Ans:

 Scheduling is a key part of the workload management software which usually perform
some or all of:

• Queuing

• Scheduling

• Monitoring

• Resource management

• Accounting
The difficult part of scheduling is to balance policy enforcement with resource
optimization in order to pick the best job to run. Essentially one can think of the
scheduler performing the following loop:

• Select the best job to run, according to policy and available resources.

• Start the job.

• Stop the job and/or clean up after completion.

• repeat.
Process scheduling consists of the following sub-functions:
1. Scheduling: Selects the process to be executed next on the CPU. The
scheduling function uses information from the PCB’s and selects a process based on
the scheduling policy in force.
2. Dispatching: Sets up execution of the selected process on the CPU. This
function involves setting up the execution environment of the selected process, and
loading information from the PSR and registers fields of the PCB into the CPU.
3. Context save: Saves the status of a running process when its execution is to be
suspended. This function performs housekeeping whenever a process releases the CPU
or is pre-empted.
 The following diagram illustrates the use of scheduling sub functions: Occurrence of
an event invokes the context save function. The kernel now processes the event that has
occurred. The scheduling function is now invoked to select a process for execution on
the CPU. The dispatching function arranges execution of the selected function on the
CPU.

Q.96. Describe the essential properties of the following operating systems
 Real Time and Distributed Operating System (8)

Ans:
Real time operating system:

Event

Context save

Event processing

Scheduling

Dispatching

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 69

1. Time constraint result
2. Priority driven or deadline oriented scheduling
3. Programmer defined interrupts
4. Hard Real time and soft real time system
5. Multitasking
6. Event driven
7. Embedded systems
8. Robotics
Distributed operating systems:

1. Resource sharing
2. Computation speed up
3. Reliability
4. Communication

Q.97. Describe Data structures used during passes of assembler and their use. (10)

 Ans:

 Data structure during passes of assembler and their use.
 Pass 1 data base

1. Input source program
2. A location counter (LC)
3. A table, the machine-operation table (MOT), that indicates the symbolic
mnemonic for each instruction and its length.
4. Pseudo- operation table
5. Symbol table
6. Literal table
7. Copy of the input to be used later by pass 2
Pass 2

1. Copy of source program input to pass 1
2. Location counter (LC)
3. MOT
4. POT
5. ST
6. Base table that indicates which registers are currently specified as base register.
7. A work space, INST, that’s used to hold instruction as its various parts are being
assembled together
8. Punch line, used to produce a printed listing.
9. Punch card for converting assembled instructions into the format needed by the
loader.

Q.98. what is parsing and specify the goals of parsing (6)

Ans:
Source programmed statements are regarded as tokens, building block of language
the task of scanning the source statement, recognizing and classifying the various
tokens is known as lexical analysis. The part of the compiler that performs this task
is commonly called a scanner.
After the token scan, each statement in the program must be recognized as some
language constructs, such as declaration or an assignment statement described by the
grammar.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 70

This process is called Syntactic analysis or parsing is performed by the part of
compiler called parser.
Goals:

1. to check the validity of source string
2. to determine the syntactic structure of a source string.
For invalid string it reports error, for a valid string it builds a parse tree to reflect the
sequences of derivations or reductions performed during parsing.

Q.99. Write short note on code optimization (8)

 Ans:
Code optimization is the optional phase designed to improve the intermediate code
so that the
Ultimate object program runs faster or takes less space. Code optimization in
compilers aims at improving the execution efficiency of a program by eliminating
redundancies and by rearranging the computations in the program without affecting
the real meaning of the program.
Scope – First optimization seeks to improve a program rather than the algorithm
used in the program. Thus replacement of algorithm by a more efficient algorithm is
beyond the scope of optimization. Also efficient code generation for a specific target
machine also lies outside its scope.
The structure of program and the manner in which data is defined and used in it
provide vital clues for optimization.
Optimization transformations are classified into local and global transformations.

Q.100. Explain the Features of Major scheduling algorithms (8)

 Ans:
 1. FCFS – First come first served scheduling
 2. Shortest job – First scheduling
 3. Priority scheduling
 4. Round robin scheduling
 FCFS-

 1. Process that request the CPU first is allocated CPU first
 2. Managed by FIFO queue.
 3. Average waiting time is generally long
 4. Non preemptive
 5. Troublesome for time sharing systems
 Shortest job first

 1. The process which has the smallest CPU burst time gets first
 2. It increases the waiting time of long processes.
 3. Problem – difficult to predict the length of next CPU request
 4. May be preemptive or non preemptive
 Priority

 1. Highest priority process gets CPU allocation first
 2. The larger the CPU burst, lower the priority
 3. Priority can be defined internally or externally
 4. Can be preemptive or non-preemptive
 5. Problem-starvation, blocking of process
 6. Solution – aging – increases the priority
 Round robin

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 71

 1. Time quantum from 10 100 millisecond is defined
 2. Processes are considered in circular queue
 3. CPU allocation is divided among processes accordingly
 4. Performance depends heavily on time quantum
 5. Preemptive

Q.101. List the criteria on the basis of which data structures used in language

processing can be classified. (3)

Ans:

 The data structures used in language processing can be classified on the following
 criterion:

1. Nature of a data structure-whether a linear or nonlinear data structure. A
linear data structure consists of a linear arrangement of elements in memory and
elements require a contiguous area of memory. The elements of a non-linear data
structure are accessed using pointers and hence the elements need not occupy
contiguous areas of memory.
2. Purpose of a data structure-whether a search data structure or an allocation
data structure. Search data structures are used during language processing to maintain
attribute information concerning different entities in the source program. Allocation
data structures are characterized by the fact that the user of that entity knows the
address of the memory area allocated to an entity thus no search operations are
conducted on them.
3. Lifetime of a data structure-whether used during language processing or
during target program execution.

Q.102. Differentiate between logical address and physical address. (4)

Ans:
A logical address is the address of the instruction or data word as used by a program
(this includes the use of index, base or segment register).
A physical address is the effective memory address of an instruction or data word.
The set of physical addresses generated during operation of system constitute the
physical address space of the system. The compile time and the load time address
binding schemes result in environment where the logical and physical address are
same, whereas during execution time addresses differ.

Q103. What are Language Processor Development Tools (LPDTs)? Explain through

schematic diagram. Name the widely used LPDTs. (4)

Ans:

Language processor development tools (LPDTs) focuses on generation of the
analysis phase of language processors. The LPDT requires the following two inputs:
1. Specification of a grammar of language L
2. Specification of semantic actions to be performed in the analysis phase.
It generates programs that perform lexical, syntax and semantic analysis of the source
program and construct the IR. These programs collectively form the analysis phase of
the language

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 72

processor.

Widely used LPDT’s are:
Lex - A Lexical Analyzer Generator

Lex helps write programs whose control flow is directed by instances of regular
expressions in the input stream. It is well suited for editor-script type transformations
and for segmenting input in preparation for a parsing routine.
Lex source is a table of regular expressions and corresponding program fragments.
The table is translated to a program, which reads an input stream, copying it to an
output stream and partitioning the input into strings which match the given
expressions. As each such string is recognized the corresponding program fragment is
executed. The recognition of the expressions is performed by a deterministic finite
automaton generated by Lex. The program fragments written by the user are executed
in the order in which the corresponding regular expressions occur in the input stream.
YACC: Yet another Compiler-Compiler

Computer program input generally has some structure; in fact, every computer
program that does input can be thought of as defining an ``input language'' which it
accepts. An input language may be as complex as a programming language, or as
simple as a sequence of numbers. Unfortunately, usual input facilities are limited,
difficult to use, and often are lax about checking their inputs for validity.
YACC provides a general tool for describing the input to a computer program. The
YACC user specifies the structures of his input, together with code to be invoked as
each such structure is recognized. YACC turns such a specification into a subroutine
that han- dles the input process; frequently, it is convenient and appropriate to have
most of the flow of control in the user's application handled by this subroutine.

Q.104. Explain the following term
 (i) Overlays (4)

 (ii) Macro definition and call (4)

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 73

 Ans:

(i)An overlay is a part of program which has the same load origin as some other part
of the program. Overlays are used to reduce the main memory requirement of a
program. When the problem arises where the size of program exceeds the memory
size, then overlays are used. Structure of such programs consists of a permanently

resident portion, called the root.

 A set of overlays

To start with, the root is loaded in memory and given control for the purpose of
execution. Other overlays are overwrites a previously loaded overlay with same load
origin, this reduces memory requirement of a program. It is also possible to execute
programs whose size exceeds the memory size.
(ii) Macro: The assembly language programming often finds it necessary to repeat
certain piece of code many times during the course of program. In such situations we
find macro facility useful. Whole process consists of three steps:
1. Macro definition instruction
2. macro call
3. macro expansion
A macro definition is enclosed between a macro header statement and a macro end
statement. Macro definitions are typically located at the start of a program. It consists
of
1. A macro prototype statement
2. One or more model statements
3. Macro preprocessor
A macro call is called by writing the macro name in the mnemonics field of an
assembly statement. Syntax for the same is
 <macro name>[<actual parameter spec>[,..]]
A macro call leads to macro expansion, during macro call expansion the macro call
statement is replaced by the sequence of assembly statements.

Q.105. Can the operand expression in an ORG statement contain forward references? If

so, outline how the statement can be processed in a two-pass assembly
scheme. (9)

Ans: (OORRGG ((oorriiggiinn)) iiss aann aasssseemmbblleerr ddiirreeccttiivvee tthhaatt

• Indirectly assign values to symbols

• Reset the location counter to the specified value-ORG value

• Value can be: constant, other symbol, expression

• No forward reference

Assemblers scan the source program, generating machine instructions. Sometimes,
the assembler reaches a reference to a variable, which has not yet been defined. This
is referred to as a forward reference problem. It is resolved in a two-pass

assembler as follows:

On the first pass, the assembler simply reads the source file, counting up the number
of locations that each instruction will take, and builds a symbol table in memory
that lists all the defined variables cross-referenced to their associated memory
address. On the second pass, the assembler substitutes opcodes for the mnemonics,

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 74

and variable names are replaced by the memory locations obtained from the symbol
table.

Consider the following program

On the first pass, the ORG statement sets the location counter to $800. Thus the label
N has the value $800, the label M has the value $801, the label COLUMN has the
value $802, and the label ODD has the value $834. The instruction CLR M will take
three bytes , the instruction LDAB N will take three bytes, and so forth. Similarly, we
see that the first byte of instruction we see that the first byte of instruction

will be at location $872. Thus the symbolic address LOOP has the value $872 and so
on. Continuing in this way, we come to

This program searches the array COLUMN looking for odd, negative, one-byte
numbers, which then are stored in array ODD. The length of COLUMN is N and the
length of ODD is M, which the program calculates. We do not know the second byte
of this instruction because we do not know the value of the address JUMP yet. (This
is called a forward reference, using a label whose value is not yet known.) However,
we can leave this second byte undetermined and proceed until we see that the
machine code for DBNE is put into location $87f, thus giving JUMP the value $87f.
As we continue our first pass downward, we allocate three bytes for DBNE B,LOQP.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 75

 We do not find this instruction's offset yet, even though we already know the value
 of LOOP.

Scanning through the program again, which is the second pass, we can fill in all the
bytes, including those not determined the first time through, for the instructions
BPL JUMP, BEQ JUMP, and DBNE B,LOOP. At this time, all object code can be
generated.

Q.106. What criteria should be adopted for choosing type of file organization (8)

Ans:
Choosing a file organization is a design decision, hence it must be done having in
mind the achievement of good performance with respect to the most likely usage of
the file. The criteria usually considered important are:
1. fast access to single record or collection of related records
2. Easy record adding/update/removal, without disrupting (1)
3. Storage efficiency
4. Redundancy as a warranty against data corruption.
Needless to say, these requirements are in contrast with each other for all but the
most trivial situations, and it’s the designer job to find a good compromise among
them, yielding an adequate solution to the problem at hand. For example, easiness of
adding/ etc. is not an issue when defining the data organization of CD ROM product,
whereas fast access is given the huge amount of data that this media can store.
However as it will become apparent shortly, fast access techniques are based on the
use additional information about the records, which in turn competes with the high
volumes of data to be stored.
Logical data Organization is indeed the subject of whole shelves of books in the
“Database” section of your library. Here we’ll briefly address some of the simpler
used techniques, mainly because of their relevance to data management from the
lower-level (with respect to a database’s) point of view of an OS. Five organization
models will be considered:

(i) Pile.
(ii) Sequential.
(iii) indexed-sequential.
(iv)Indexed
(v) Hashed.

Q.107 Compare pre-emptive and non-preemptive scheduling policies. (4)

Ans:

 In preemptive scheduling we preempt the currently executing process.
In non-preemptive we allow the current process to finish its CPU burst
time.

Q.108. Explain the differences between:

 (i) Logical and physical address space.
 (ii) Internal and external fragmentation.

 (iii)Paging and segmentation. (6)

Ans:

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 76

Logical Vs physical address space
(1) An address generated by the CPU is commonly referred to as a logical a logical
address. The set of all logical addresses generated by a program is known as logical
address space. Whereas, an address seen by the memory unit- that is, the one loaded
into the memory-address register of the memory- is commonly referred to as physical
address. The set of all physical addresses corresponding to the logical addresses is
known as physical address space.
(2) The compile-time and load-time address-binding methods generate identical
logical and physical addresses. However, in the execution-time address-binding
scheme, the logical and physical-address spaces differ.
(3) The user program never sees the physical addresses. The program creates a pointer
to a logical address, say 346, stores it in memory, manipulate it, compares it to other
logical addresses- all as the number 346.
Only when a logical address is used as memory address, it is relocated relative to the
base/relocation register. The memory-mapping hardware device called the memory-
management unit(MMU) converts logical addresses into physical addresses.
(4) Logical addresses range from 0 to max. User program that generates logical
address thinks that the process runs in locations 0 to max.
Logical addresses must be mapped to physical addresses before they are used.
Physical addresses range from (R+0) to (R + max) for a base/relocation register value
R.
(5) Example:

The value in relocation/base register is added to every logical address generated by a
user process, at the time it is sent to memory, to generate corresponding physical
address.
In the above figure, base/ relocation value is 14000, then an attempt by the user to
access the location 346 is mapped to 14346.
(ii) Internal and external fragmentation
(1) When memory allocated to a process is slightly larger than the requested memory,
space at the end of a partition is unused and wasted. This wasted space within a
partition is called as internal fragmentation. When enough total memory space exists to
satisfy a request, but it is not contiguous; storage is fragmented into a large number of
small holes. This wasted space not allocated to any partition is called external
fragmentation.

CPU

memory

Relocati
on

register

 +

Logical
address

MMU

14346 346

Physical
address

14000

Mapping from logical to physical addresses using memory management unit
(MMU) and relocation/base register

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 77

(2) Internal fragmentation is found in multiple fixed partition schemes where all the
partitions are of the same size. That is, physical memory is broken into fixed-sized
blocks.
External fragmentation is found in multiple variable partition schemes. Instead of
dividing memory into a fixed set of partitions, an operating system can choose to
allocate to a process the exact amount of unused memory space it requires.
(3) In multiple fixed partition scheme, the partition table needs to store either the
starting address for each process or the number of the partition allocated to each
process.
In multiple variable partition scheme, the overhead of managing more data increases.
The partition table must store exact starting and ending location of each process and
data about which memory locations are free must be maintained.
(4) In multiple fixed partition schemes, size/limit register is set at boot time and
contains the partition size. Each time a process is allocated control of CPU, the
operating system only needs to reset the relocation register. In multiple variable
partition schemes, each time a different process is given control of the CPU, the
operating system must reset the size/limit register in addition to the relocation register.
The operating system must also make decisions on which partition it should allocate to
a process.
(5) Internal fragmentation can be reduced using multiple variable partition method.
However, this solution suffers from external fragmentation. External fragmentation can
be solved using compaction where the goal is to shuffle the memory contents to place
all free memory together in one large block. Another possible solution to the external
fragmentation problem is to permit the logical address space of a process to be non
contiguous. This solution is achieved by paging and segmentation.
(iii) Paging and segmentation

Paging Segmentation

Computer memory is divided into small
partitions that are all the same size and
referred to as, page frames. Then when a
process is loaded it gets divided into pages
which are the same size as those previous
frames. The process pages are then loaded
into the frames.

Memory-management scheme that supports
user view of memory.
Computer memory is allocated in various
sizes (segments) depending on the need for
address space by the process.

Address generated by CPU is divided into:
Page number (p) – used as an index into a
page table which contains base address of
each page in physical memory.
Page offset (d) – combined with base
address to define the physical memory
address that is sent to the memory unit.

Logical address consists of a two tuple:
<segment-number, offset>

Transparent to programmer (system
allocates memory)

Involves programmer (allocates memory to
specific function inside code)

No separate protection Separate protection

No separate compiling Separate compiling

No shared code Share code

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 78

Q.109. Suppose that a process scheduling algorithm favors those processes that have used
the least processor time in the recent past. Why will this algorithm favour /IO-
bound processes, but not starve CPU-bound processes? (6)

Ans: It will favor the I/O-bound programs because of the relatively short CPU burst
request by them; however, the CPU-bound programs will not starve because the I/O-
bound programs will relinquish the CPU relatively often to do their I/O.

Q.110 List one advantage and one disadvantage of having large block size. (4)

Ans: The advantage of using a large block of memory is accommodation of
maximum processes resulting is less number of page faults.
The disadvantage of using a large block of memory is occurrence of internal
fragmentation i.e allocated memory may be slightly larger than requested memory.
e.g., suppose memory is allocated in blocks of 4K, a 1K process will waste 3K of
space in its partition, as will a 5K process.

 Q.111. Consider the following segmented paging memory system. There are 4 segments

for the given process and a total of 5 page tables in the entire system. Each page
table has a total of 8 entries. The physical memory requires 12 bits to address it;
there are a total of 128 frames.

Segment Table

 0 0x73 0x25 0x85 0x0F 0x17

 1 0x2C 0x2D 0x31 0x3D 0x00
0 0x3 2 0x05 0x1E 0x01 0x5D 0x0D
1 0x1 3 0x17 0x5A 0x1F 0x1E 0x66
2 0x0 4 0x57 0x0F 0x09 0x6C 0x62
3 0x4 5 0x1A 0x7A 0x0A 0x2F 0x50

 6 0x4B 0x2B 0x1A 0x78 0x32

 7 0x11 0x6C 0x32 0x7B 0x11

 0 1 2 3 4

Page Tables

 physical memory; address=12

bits

 (i) How many bytes are contained within the physical memory?

 (ii) How large is the virtual address?

 (iii) What is the physical address that corresponds to virtual address 0x312?

 (iv) What is the physical address that corresponds to virtual address 0x1E9? (8)

Ans:

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 79

(i) Number of bytes in physical memory is equal to 2 ^(7 + 7) = 16K bytes. This is
because 12 bits are required to address physical memory location out of which 3 bits
are to refer frame no. within page table + 2 bits to locate page from segment and
remaining 7 bits for offset with frame.
(ii) The size of virtual memory is 2 ^ 20 (20 = 2 for segment index, + 3 for page table
index + 3 for frame index in page table + 7 for frame number and 5 for offset within
frame).
(iii) 312 (Hex) = 001100010010 = 00(segment) in table number 3 (refer to the data in
question at entry 0 in segment table then find page 3, in page 3 find 110 (6th entry)
which is 78; that is 120 th frame then the offset with the frame is given by the last 7
bits 0010010.
(iv) 312 (Hex) = 001100010010 = 00(segment) in table number 3 (refer to the data in
question at entry 0 in segment table then find page 3, in page 3 find 110 (6th entry)
which is 78; that is 120 th frame then the offset with the frame is given by the last 7
bits 0010010.

Q 112. Explain analysis and synthesis phase of a compiler. (7)

Ans:

The analysis and synthesis phases of a compiler are:
Analysis Phase: Breaks the source program into constituent pieces and creates
intermediate representation. The analysis part can be divided along the following
phases:
1. Lexical Analysis- The program is considered as a unique sequence of characters.
The Lexical Analyzer reads the program from left-to-right and sequence of characters
is grouped into tokens–lexical units with a collective meaning.
2. Syntax Analysis- The Syntactic Analysis is also called Parsing. Tokens are
grouped into grammatical phrases represented by a Parse Tree, which gives a
hierarchical structure to the source program.
3. Semantic Analysis- The Semantic Analysis phase checks the program for semantic
errors (Type Checking) and gathers type information for the successive phases. Type

Checking check types of operands; No real number as index for array; etc.
Synthesis Phase: Generates the target program from the intermediate representation.
The synthesis part can be divided along the following phases:
1. Intermediate Code Generator- An intermediate code is generated as a program for
an abstract machine. The intermediate code should be easy to translate into the target
program.
2. Code Optimizer- This phase attempts to improve the intermediate code so that
faster-running machine code can be obtained. Different compilers adopt different
optimization techniques.
3. Code Generator- This phase generates the target code consisting of assembly code.
Here
1. Memory locations are selected for each variable;
2. Instructions are translated into a sequence of assembly instructions;
3. Variables and intermediate results are assigned to memory registers.

Q.113. Explain the concept of variable-partition contiguous storage allocation. (6)

Ans:

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 80

Assume that we have 1024K main memory available in which 128K is occupied by
operating system program. There are 4 jobs waiting for memory allocation in a job
queue Applying FCFS scheduling policy, Process 1, Process 2 and Process 3 can be
immediately allocated in memory. Process 4 cannot be accommodated because there is
there is not enough space.

•A hole of 64K is left after loading 3 processes: not enough room for another process.

•Eventually each process is blocked. The OS swaps out process 2 to bring in process 4.

•Another hole of 96K is created.
•Eventually each process is blocked. The OS swaps out process 1 to bring in again
process 2 and another hole of 96K is created.

Q.114. Suppose two processes enter the ready queue with the following properties:

Process 1 has a total of 8 units of work to perform, but after every 2 units of work,
it must perform 1 unit of I/O (so the minimum completion time of this process is 12
units). Assume that there is no work to be done following the last I/O operation.
Process 2 has a total of 20 units of work to perform. This process arrives just
behind P1. Show the resulting schedule for the shortest-job-first (preemptive) and
the round-robin algorithms. Assume a time slice of 4 units of RR. What is the
completion time of each process under each algorithm? (8)

Ans:

 S-J-F(pre emtive):

P1 P2 P1 P2 P1 P2 P1 P2 P2

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 81

 0 2 3 5 6 8 9 11 12 28

Between 2-3unit of time, p2 is in ready queue and P1 has gone for I /O. So P2 should be
executed as it is pre-emptive SJF algorithm.

 Completion time of process p1 = 12 unit
 Completion time of process p2 = 28 unit

Round- robin (R R) algorithm

P1 P2 P1 P2 P1 P2 P1 P2

 0 2 6 8 12 14 18 20 28

 Completion time of process p1 = 20 unit
 Completion time of process p2 = 28 unit

Q.115. What are the relocation requirements in segmented addressing? (8)

 Ans:
The relocation requirements of a program are influenced by the addressing structure of
the computer system on which it is to execute. Use of the segmented addressing
structure reduces the relocation requirements of a program
Consider the following assembly program of 8088. The ASSUME statement declares
the Segment registers CS and DS to be available for memory addressing.

S.No. Statement offset

0001 DATA-HERE SEGMENT
0002 ABC DW 25 0000
0003 B DW? 0002
.
.
.
0012 SAMPLE SEGMENT
0013 ASSUME CS: SAMPLE,
 DS: DATA-HERE
0014 MOV AX, DATA-HERE 0000
0015 MOV DS, AX 0003
0016 JMP A 0005
0017 MOV AL, B 0008
. .

. .

. .
0027 A MOV AX, BX 0196
.
.
.
0043 SAMPLE ENDS
0044 END

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC14 System Software and Operating System

 82

Translation time address of A is 0196. At S.NO 16, a reference to A is assembled as a
displacement of 196 from the contents of the CS register. This avoids the use of an
absolute address. Now no relocation is needed if segment SAMPLE is to be loaded in
the memory starting at the address 2000 because CS register would be loaded with the
address by a calling program (or by the OS). The effective operand address would be
calculated as <CS> + 0196 = 2196. A similar situation for B in S.NO. 17. The
reference to B is assembled as a displacement of 0002 from the contents of the DS
register. Since the DS register would be loaded with the execution time address of
DATA –HERE, the reference to B would be automatically relocated to the correct
address.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

