
DC08 DATA STRUCTURES

1

TYPICAL QUESTIONS & ANSWERS

PART I
OBJECTIVE TYPE QUESTIONS

Each Question carries 2 marks.

Q.1 If h is any hashing function and is used to hash n keys in to a table of size m, where n<=m, the
expected number of collisions involving a particular key x is :

 (A) less than 1. (B) less than n.
 (C) less than m. (D) less than n/2.

 Ans:A

Q.2 Let A be an adjacency matrix of a graph G. The thij entry in the matrix KA , gives

 (A) The number of paths of length K from vertex Vi to vertex Vj.
 (B) Shortest path of K edges from vertex Vi to vertex Vj.

(C) Length of a Eulerian path from vertex Vi to vertex Vj.
(D) Length of a Hamiltonian cycle from vertex Vi to vertex Vj.

 Ans:B

Q.3 The OS of a computer may periodically collect all the free memory space to form contiguous
block of free space. This is called

 (A) Concatenation (B) Garbage collection
 (C) Collision (D) Dynamic Memory Allocation

 Ans:B

Q.4 What is the following code segment doing?
 void fn(){
 char c;
 cin.get(c);
 if (c != ‘\n’) {
 fn();
 cout.put(c);
 }
 }

(A) The string entered is printed as it is.
(B) The string entered is printed in reverse order.
(C) It will go in an infinite loop.
(D) It will print an empty line.

 Ans:B

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

2

Q.5 You have to sort a list L consisting of a sorted list followed by a few “random” elements.
Which of the following sorting methods would be especially suitable for such a task?

(A) Bubble sort (B) Selection sort
(C) Quick sort (D) Insertion sort

 Ans:D

Q.6 B Trees are generally
(A) very deep and narrow (B) very wide and shallow

 (C) very deep and very wide (D) cannot say

 Ans:D

Q.7 A technique for direct search is
 (A) Binary Search (B) Linear Search
 (C) Tree Search (D) Hashing

 Ans:D

Q.8 If a node having two children is deleted from a binary tree, it is replaced by its
 (A) Inorder predecessor (B) Inorder successor
 (C) Preorder predecessor (D) None of the above

Ans:B

Q.9 The searching technique that takes O (1) time to find a data is
 (A) Linear Search (B) Binary Search

(C) Hashing (D) Tree Search

 Ans:C

Q.10 A mathematical-model with a collection of operations defined on that model is called
(A) Data Structure (B) Abstract Data Type
(C) Primitive Data Type (D) Algorithm

 Ans:B

Q.11 The number of interchanges required to sort 5, 1, 6, 2 4 in ascending order using Bubble Sort

is
 (A) 6 (B) 5
 (C) 7 (D) 8

 Ans:B

Q.12 The postfix form of the expression () () G/FEDCBA ∗−∗∗+ is

(A) ∗∗−∗+ /FGECDAB (B) /GFECDAB ∗∗−∗+

(C) /GFECDAB ∗∗−∗+ (D) /GFCDEAB ∗∗−∗+

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

3

 Ans: A

Q.13 The complexity of multiplying two matrices of order m*n and n*p is
(A) mnp (B) mp

(C) mn (D) np

 Ans:A

Q.14 Merging 4 sorted files containing 50, 10, 25 and 15 records will take____time
(A) O (100) (B) O (200)
(C) O (175) (D) O (125)

 Ans:A

Q.15 For an undirected graph with n vertices and e edges, the sum of the degree of each vertex is
equal to

(A) 2n (B) (2n-1)/2

(C) 2e (D) e2/2

 Ans:C

Q.16 In worst case Quick Sort has order
(A) O (n log n) (B) O (n2/2)
(C) O (log n) (D) O (n2/4)

 Ans:B

Q.17 A full binary tree with 2n+1 nodes contain
(A) n leaf nodes (B) n non-leaf nodes

(C) n-1 leaf nodes (D) n-1 non-leaf nodes

 Ans:B

Q.18 If a node in a BST has two children, then its inorder predecessor has
(A) no left child (B) no right child

(C) two children (D) no child

 Ans:B

Q.19 A binary tree in which if all its levels except possibly the last, have the maximum number of
nodes and all the nodes at the last level appear as far left as possible, is known as

 (A) full binary tree. (B) AVL tree.
 (C) threaded tree. (D) complete binary tree.

 Ans:A

 Q.20 A linear list of elements in which deletion can be done from one end (front) and insertion
can take place only at the other end (rear) is known as a

(A) queue. (B) stack.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

4

(C) tree. (D) linked list.

 Ans:A

Q.21 What is the postfix form of the following prefix expression -A/B*C$DE
(A) ABCDE$*/- (B) A-BCDE$*/-
(C) ABC$ED*/- (D) A-BCDE$*/

 Ans:A

Q.22 A full binary tree with n leaves contains

(A) n nodes. (B) nlog2 nodes.

(C) 2n –1 nodes. (D) n2 nodes.

 Ans:C

 Q.23 A sort which relatively passes through a list to exchange the first element with any element
less than it and then repeats with a new first element is called

(A) insertion sort. (B) selection sort.
(C) heap sort. (D) quick sort.

 Ans:D

 Q.24 Which of the following sorting algorithms does not have a worst case running time of ()2nO ?

(A) Insertion sort (B) Merge sort
(C) Quick sort (D) Bubble sort

 Ans:B

Q.25 An undirected graph G with n vertices and e edges is represented by adjacency list. What is
the time required to generate all the connected components?

(A) O (n) (B) O (e)

(C) O (e+n) (D) O ()2e

 Ans:C

Q.26 Consider a linked list of n elements. What is the time taken to insert an element after an
element pointed by some pointer?

(A) O (1) (B) O ()nlog2

(C) O (n) (D) O ()nlogn 2

 Ans:A

Q.27 The smallest element of an array’s index is called its
(A) lower bound. (B) upper bound.
(C) range. (D) extraction.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

5

 Ans:A

Q.28 In a circular linked list
(A) components are all linked together in some sequential manner.
(B) there is no beginning and no end.
(C) components are arranged hierarchically.
(D) forward and backward traversal within the list is permitted.

Ans:B

Q.29 A graph with n vertices will definitely have a parallel edge or self loop of the total number of
edges are

 (A) more than n (B) more than n+1
(C) more than (n+1)/2 (D) more than n(n-1)/2

 Ans: D

Q.30 The minimum number of multiplications and additions required to evaluate the polynomial
 P = 4x3+3x2-15x+45 is

(A) 6 & 3 (B) 4 & 2
(C) 3 & 3 (D) 8 & 3

 Ans: C

Q.31 The maximum degree of any vertex in a simple graph with n vertices is
 (A) n–1 (B) n+1
 (C) 2n–1 (D) n

 Ans: A

Q.32 The data structure required for Breadth First Traversal on a graph is
(A) queue (B) stack
(C) array (D) tree

 Ans: A

Q.33 The quick sort algorithm exploit _________ design technique

 (A) Greedy (B) Dynamic programming
 (C) Divide and Conquer (D) Backtracking

 Ans: C

Q.34 The number of different directed trees with 3 nodes are
(A) 2 (B) 3
(C) 4 (D) 5

 Ans: B

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

6

Q.35 One can convert a binary tree into its mirror image by traversing it in
(A) inorder (B) preorder
(C) postorder (D) any order

 Ans:C

Q.36 The total number of companions required to merge 4 sorted files containing 15, 3, 9 and 8
records into a single sorted file is

(A) 66 (B) 39

(C) 15 (D) 3

 Ans: 33 (option is not available)

Q.37 In a linked list with n nodes, the time taken to insert an element after an element pointed by
some pointer is

(A) 0 (1) (B) 0 (log n)
(C) 0 (n) (D) 0 (n 1og n)

 Ans:A

Q.38 The data structure required to evaluate a postfix expression is
(A) queue (B) stack

(C) array (D) linked-list

 Ans:B

Q.39 The data structure required to check whether an expression contains balanced parenthesis is
 (A) Stack (B) Queue

(C) Tree (D) Array

 Ans:A

 Q.40 The complexity of searching an element from a set of n elements using Binary search
algorithm is

(A) O(n) (B) O(log n)
(C) O(n2) (D) O(n log n)

 Ans:B

Q.41 The number of leaf nodes in a complete binary tree of depth d is

(A) 2d (B) 2d–1+1
(C) 2d+1+1 (D) 2d+1

 Ans:A

Q.42 What data structure would you mostly likely see in a nonrecursive implementation of a
recursive algorithm?

(A) Stack (B) Linked list
(C) Queue (D) Trees

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

7

 Ans:A

Q.43 Which of the following sorting methods would be most suitable for sorting a list which is
almost sorted

(A) Bubble Sort (B) Insertion Sort
(C) Selection Sort (D) Quick Sort

 Ans:A

Q.44 A B-tree of minimum degree t can maximum _____ pointers in a node.

(A) t–1 (B) 2t–1
(C) 2t (D) t

 Ans:D

Q.45 The process of accessing data stored in a serial access memory is similar to manipulating data
on a

(A) heap (B) queue
(C) stack (D) binary tree

 Ans:C

Q.46 A graph with n vertices will definitely have a parallel edge or self loop if the total number of
edges are

(A) greater than n–1 (B) less than n(n–1)
(C) greater than n(n–1)/2 (D) less than n2/2

 Ans:A

 Q.47 A BST is traversed in the following order recursively: Right, root, left
 The output sequence will be in

(A) Ascending order (B) Descending order
(C) Bitomic sequence (D) No specific order

 Ans:B

Q.48 The pre-order and post order traversal of a Binary Tree generates the same output. The tree can
have maximum

(A) Three nodes (B) Two nodes

(C) One node (D) Any number of nodes

 Ans:C

Q.49 The postfix form of A*B+C/D is
 (A) *AB/CD+ (B) AB*CD/+

(C) A*BC+/D (D) ABCD+/*

 Ans:B

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

8

Q.50 Let the following circular queue can accommodate maximum six elements with the
following data
 front = 2 rear = 4
 queue = _______; L, M, N, ___, ___
 What will happen after ADD O operation takes place?

(A) front = 2 rear = 5
 queue = ______; L, M, N, O, ___

(B) front = 3 rear = 5
 queue = L, M, N, O, ___

(C) front = 3 rear = 4
 queue = ______; L, M, N, O, ___

(D) front = 2 rear = 4
 queue = L, M, N, O, ___

 Ans:A

Q.51 A binary tree of depth “d” is an almost complete binary tree if

(A) Each leaf in the tree is either at level “d” or at level “d–1”

(B) For any node “n” in the tree with a right descendent at level “d” all the left
descendents of “n” that are leaves, are also at level “d”

(C) Both (A) & (B)
(D) None of the above

 Ans:C

Q.52 A linear collection of data elements where the linear node is given by means of pointer is
called

(A) linked list (B) node list
(C) primitive list (D) None of these

 Ans:A

Q.53 Representation of data structure in memory is known as:
(A) recursive (B) abstract data type
(C) storage structure (D) file structure

 Ans:B

Q.54 If the address of A[1][1] and A[2][1] are 1000 and 1010 respectively and each element
occupies 2 bytes then the array has been stored in _________ order.

(A) row major (B) column major
(C) matix major (D) none of these

 Ans:A

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

9

Q.55 An adjacency matrix representation of a graph cannot contain information of :
(A) nodes (B) edges

(C) direction of edges (D) parallel edges

 Ans:D

Q.56 Quick sort is also known as
(A) merge sort (B) heap sort
(C) bubble sort (D) none of these

 Ans:D

Q.57 One of the major drawback of B-Tree is the difficulty of traversing the keys sequentially.

(A) True (B) False

 Ans:A

Q.58 O(N) (linear time) is better than O(1) constant time.

 (A) True (B) False

 Ans:B

 Q.59 An ADT is defined to be a mathematical model of a user-defined type along with the collection
of all ____________ operations on that model.

(A) Cardinality (B) Assignment
(C) Primitive (D) Structured

 Ans:C

 Q.60 An algorithm is made up of two independent time complexities f (n) and g (n). Then the
complexities of the algorithm is in the order of

(A) f(n) x g(n) (B) Max (f(n),g(n))
(C) Min (f(n),g(n)) (D) f(n) + g(n)

 Ans:B

 Q.61 The goal of hashing is to produce a search that takes

(A) O(1) time (B) O(n
2

)

 time

(C) O(log n) time (D) O(n log n) time

 Ans:A

 Q.62 The best average behaviour is shown by

 (A) Quick Sort (B) Merge Sort
 (C) Insertion Sort (D) Heap Sort

 Ans:A

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

10

Q.63 What is the postfix form of the following prefix *+ab–cd

(A) ab+cd–* (B) abc+*–
(C) ab+*cd– (D) ab+*cd–

 Ans:A

Q.64 Time complexities of three algorithms are given. Which should execute the slowest for large
values of N?

(A) ()21NO (B) ()NO

(C) ()NO log (D) None of these

 Ans:B

Q.65 How does an array differ from an ordinary variable?

Ans.

Array Vs. Ordinary Variable
Array is made up of similar data structure that exists in any language. Array is set of similar
data types. Array is the collection of similar elements. These similar elements could be all int
or all float or all char etc. Array of char is known as string. All elements of the given array
must be of same type. Array is finite ordered set of homogeneous elements. The number of
elements in the array is pre-specified.
An ordinary variable of a simple data type can store a single element only.

 For example: Ordinary variable: - int a
 Array: - int a[10]

Q.66 What values are automatically assigned to those array elements which are not explicitly
 initialized?

Ans.
Garbage values are automatically assigned to those array elements that are not explicitly
initialized. If garbage class is auto then array is assumed to contain garbage values. If storage
class were declared static or external then all the array elements would have a default initial
value as zero.

Q.67 A stack is to be implemented using an array. The associated declarations are:
 int stack [100];

 int top = 0;
 Give the statement to perform push operation.

Ans.

 Let us assume that if stack is empty then its top has value –1.
Top ranges from 0 – 99. Let item be the data to be inserted into stack
int stack [100];

int top = 0;

int item ;

If (top == 99)

 Printf (“stack overflow”);

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

11

 Else

 stack[top++] = item;

Q.68 Assume that a queue is available for pushing and popping elements. Given an input sequence a,
b, c, (c be the first element), give the output sequence of elements if the rightmost element
given above is the first to be popped from the queue.

 Ans.

A B C

 Front Rear
 c b a

Q.69 A two dimensional array TABLE [6] [8] is stored in row major order with base address 351.
What is the address of TABLE [3] [4]?

Ans.

 TABLE [6] [8]
 Base address 351

Let us assume that TABLE[6] [8] is of type integer.
The formula for row major form to calculate address is
Loc(a[i] [j]) = base (a) + w [n (i –lbr) + (j-lbc)]
where
n no. of column in array
w no of bytes per storage location
lbr lower bound for row index
lbc lower bound for column index.
Loc(TABLE[3] [4]) = 351 + 2[8(3-0) + (4-0)]
 = 351 +2[24+4]
 = 351 + 56
 =407

Q.70 Which sorting algorithm is best if the list is already sorted? Why?

Ans.

Insertion sort as there is no movement of data if the list is already sorted and complexity is of
the order O(N)

 Q.71 What is the time complexity of Merge sort and Heap sort algorithms?

Ans.

Time complexity of merge sort is O(N log2 N)
 Time complexity of heap sort is O(nlog2n)

Sort Worst Case Average Case Best Case

Merge Sort O(nlog n) O(nlog n) O(nlog n)

Heap Sort O(nlog n) O(nlog n) O(nlog n)

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

12

 Q.72 What is the maximum possible number of nodes in a binary tree at level 6?

Ans.

26 = 2 x 2 x 2 x 2 x 2 x 2 = 64

Q.73 A queue is a,

 (A) FIFO (First In First Out) list. (B) LIFO (Last In First Out) list.
 (C) Ordered array. (D) Linear tree.

 Ans. (A)

Q.74 Which data structure is needed to convert infix notation to postfix notation?
 (A) Branch (B) Queue
 (C) Tree (D) Stack

 Ans. (D)

Q.75 Which of the following operations is performed more efficiently by doubly linked list than
 by singly linked list?

(A) Deleting a node whose location in given
(B) Searching of an unsorted list for a given item
(C) Inverting a node after the node with given location
(D) Traversing a list to process each node

 Ans. (A)

Q.76 The extra key inserted at the end of the array is called a,

 (A) End key. (B) Stop key.

(C) Sentinel. (D) Transposition.

 Ans. (C)

Q.77 The prefix form of A-B/ (C * D ^ E) is,

(A) -/*^ACBDE (B) -ABCD*^DE

(C) -A/B*C^DE (D) -A/BC*^DE

 Ans. (C)

Q.78 Consider that n elements are to be sorted. What is the worst case time complexity of Bubble
sort?

(A) O(1) (B) O(log2n)

 (C) O(n) (D) O(n2)

 Ans. (D)

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

13

Q.79 A characteristic of the data that binary search uses but the linear search ignores is
the___________.

(A) Order of the elements of the list.
(B) Length of the list.
(C) Maximum value in list.
(D) Type of elements of the list.

 Ans. (A)

 Q.80 In Breadth First Search of Graph, which of the following data structure is used?
 (A) Stack. (B) Queue.
 (C) Linked List. (D) None of the above.

 Ans. (B)

Q.81 The largest element of an array index is called its
 (A) lower bound. (B) range.
 (C) upper bound. (D) All of these.

 Ans. (C)

Q.82 What is the result of the following operation

Top (Push (S, X))
 (A) X (B) null
 (C) S (D) None of these.

 Ans. (A)

 Q.83 How many nodes in a tree have no ancestors.

(A) 0 (B) 1
(C) 2 (D) n

 Ans. (B)

 Q.84 In order to get the contents of a Binary search tree in ascending order, one has to traverse it in
 (A) pre-order. (B) in-order.

(C) post order. (D) not possible.

 Ans. (B)

 Q.85 Which of the following sorting algorithm is stable
 (A) insertion sort. (B) bubble sort.
 (C) quick sort. (D) heap sort.

 Ans. (D)

Q.86 The prefix form of an infix expression t*rqp −+ is

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

14

 (A) rt*pq −+ . (B) t*pqr+− .

 (C) rt*pq+− . (D) pqrt*+− .

 Ans. (C)

Q.87 Which data structure is used for implementing recursion?
 (A) Queue. (B) Stack.
 (C) Arrays. (D) List.

 Ans. (B)

Q.88 In binary search, average number of comparison required for searching an element in a list if n
numbers is

 (A) nlog2 . (B) 2/n .

 (C) n. (D) n – 1.

 Ans. (A)

Q.89 In order to get the information stored in a Binary Search Tree in the descending order, one
should traverse it in which of the following order?

 (A) left, root, right (B) root, left, right
 (C) right, root, left (D) right, left, root

 Ans. (C)

Q.90 The equivalent prefix expression for the following infix expression (A+B)-(C+D*E)/F*G is
 (A) -+AB*/+C*DEFG (B) /-+AB*+C*DEFG
 (C) -/+AB*+CDE*FG (D) -+AB*/+CDE*FG

 Ans. (A)

Q.91 The time required to delete a node x from a doubly linked list having n nodes is
 (A) O (n) (B) O (log n)
 (C) O (1) (D) O (n log n)

 Ans. (C)

Q.92 Ackerman’s function is defined on the non-negative integers as follows
 a (m,n) = n+1 if m=0
 = a (m-1, 1) if m ≠ 0, n=0
 = a (m-1, a(m, n-1)) if m ≠ 0, n ≠ 0
 The value of a (1, 3) is
 (A) 4. (B) 5.

(C) 6. (D) 7.

 Ans. (B)

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

15

Q.93 The result of evaluating the postfix expression 5, 4, 6, +, *, 4, 9, 3, /, +, * is
(A) 600. (B) 350.
(C) 650. (D) 588.

Ans. (B)

Q.94 The worst case of quick sort has order
(A) O(n2) (B) O(n)

 (C) O (n log2 n) (D) O (log2 n)

 Ans. (A)

 Q.95 For an undirected graph G with n vertices and e edges, the sum of the degrees of each vertex is
 (A) ne (B) 2n
 (C) 2e (D) en

 Ans. (C)

Q.96 The time required to delete a node x from a doubly linked list having n nodes is
 (A) O (n) (B) O (log n)
 (C) O (1) (D) O (n log n)

 Ans. (C)

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 16

PART II

DESCRIPTIVES

Q.1 What is an algorithm? What are the characteristics of a good algorithm? (4)

Ans:

An algorithm is “a step-by-step procedure for accomplishing some task'' An
algorithm can be given in many ways. For example, it can be written down in
English (or French, or any other ''natural'' language). However, we are
interested in algorithms which have been precisely specified using an
appropriate mathematical formalism--such as a programming language.
Every algorithm should have the following five characteristics:
1.Input: The algorithm should take zero or more input.
2. Output: The algorithm should produce one or more outputs.
3. Definiteness: Each and every step of algorithm should be defined
unambiguously.
4. Effectiveness: A human should be able to calculate the values involved in
the procedure of the algorithm using paper and pencil.
5. Termination: An algorithm must terminate after a finite number of steps.

Q.2 How do you find the complexity of an algorithm? What is the relation

between the time and space complexities of an algorithm? Justify your answer
with an example. (5)

Ans:
Complexity of an algorithm is the measure of analysis of algorithm. Analyzing an
algorithm means predicting the resources that the algorithm requires such as
memory, communication bandwidth, logic gates and time. Most often it is
computational time that is measured for finding a more suitable algorithm. This is
known as time complexity of the algorithm. The running time of a program is
described as a function of the size of its input. On a particular input, it is
traditionally measured as the number of primitive operations or steps executed.

The analysis of algorithm focuses on time complexity and space complexity. As
compared to time analysis, the analysis of space requirement for an algorithm is
generally easier, but wherever necessary, both the techniques are used. The space
is referred to as storage required in addition to the space required storing the input
data. The amount of memory needed by program to run to completion is referred
to as space complexity. For an algorithm, time complexity depends upon the size
of the input, thus, it is a function of input size ‘n’. So the amount of time needed
by an algorithm to run to its completion is referred as time complexity.

The best algorithm to solve a given problem is one that requires less memory and
takes less time to complete its execution. But in practice it is not always possible
to achieve both of these objectives. There may be more than one approach to
solve a same problem. One such approach may require more space but takes less
time to complete its execution while the other approach requires less space but

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 17

more time to complete its execution. Thus we may have to compromise one to
improve the other. That is, we may be able to reduce space requirement by
increasing running time or reducing running time by allocating more memory
space. This situation where we compromise one to better the other is known as
Time-space tradeoff.

Q.3 Compare two functions 2n and 42n for various values of n. Determine

when second becomes larger than first. (5)

When n=8, the value of n2 and 2n/4 is same. Before that n2 >2n/4, and after this
value n2< 2n/4.

Q.4 Explain an efficient way of storing a sparse matrix in memory. Write a

module to find the transpose of a sparse matrix stored in this way. (10)

 Ans:
 A matrix in which number of zero entries are much higher than the number of non

zero entries is called sparse matrix. The natural method of representing matrices
in memory as two-dimensional arrays may not be suitable for sparse matrices.
One may save space by storing only nonzero entries. For example matrix A (3*3
matrix) represented below
 0 2 0
 5 0 0
 0 6 9
can be written in sparse matrix form as:

 3 3 4
 0 1 2
 1 0 5

 2 2 6
 2 3 9

where first row represent the dimension of matrix and last column tells the
number of non zero values; second row onwards it is giving the position and value
of non zero number.

n n2 2n/4

1
2
3
4
5
6
7
8
9
10

1
4
9
16
25
36
49
64
81
100

0.5
1
2
4
8
16
32
64
128
256

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 18

A function to find transpose of a sparse matrix is:
void transpose(x,r,y)

int x[3][3],y[3][3],r;

{

 int i,j,k,m,n,t,p,q,col;

 m=x[0][0];

 n=x[0][1];

 t=x[0][2];

 y[0][0]=n;

 y[0][1]=m;

 y[0][2]=t;

 if(t>0)

{

 q=1;

 for (col=0;col<=n;col++)

 for(p=1;p<=t;p++)

 if(x[p][1]==col)

 {

 y[q][0]=x[p][1];

 y[q][1]=x[p][0];

 y[q][2]=x[p][2];

 q++;

 }

}

return;

}

 Q.5 Explain an efficient way of storing two symmetric matrices of the same order

in memory. (4)

Ans:

A n-square matrix array is said to be symmetric if a[j][k]=a[k][j] for all j and k.
For a symmetric matrix, we need to store elements which lie on and below the
diagonal or those on and above the diagonal. Two symmetric matrix of A and B
of same dimension can be stored in an n*(n+1) array C where c[j][k]=a[j][k]
when j≥k but c[j][k-1]=b[j][k-1] when j<k.

 a11 b11 b12 b13 … b1,n-1 b1n

 a21 a22 b22 b23 … b2,n-1 b2n

 a31 a32 a32 b33 … b3,n-1 b3n

…………………………………………………
………………………………………………….

an1 an2 an3 an4 … an,n bnn

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 19

Q.6 Write an algorithm to evaluate a postfix expression. Execute your algorithm

using the following postfix expression as your input : a b + c d +*f ↑ . (7)

Ans:
To evaluate a postfix expression:

clear the stack

symb = next input character

while(not end of input)

{

 if (symb is an operand)

 push onto the stack;

 else

 {

 pop two operands from the stack;

 result=op1 symb op2;

 push result onto the stack;

}

symb = next input character;

}

return (pop (stack));

The given input as postfix expression is:- ab+cd+*f^

Symb Stack Evaluation
 a a
 b a b
 + pop a and b (a + b)
 Push (a + b)
 c (a + b) c
 d (a + b) c d
 + pop c and d (c + d)
 Push (c + d)
 * pop (a + b) and (c + d) (a + b) * (c + d)
 f (a + b) * (c + d) f
 ^ pop (a + b) * (c + d) and f (a + b) * (c + d) ^ f

 The result of evaluation is ((a + b) * (c + d)) ^ f

Q.7 What are circular queues? Write down routines for inserting and deleting
elements from a circular queue implemented using arrays. (7)

Ans:
Circular queue: Static queues have a very big drawback that once the queue is
FULL, even though we delete few elements from the "front" and relieve some
occupied space, we are not able to add anymore elements as the "rear" has already
reached the Queue's rear most position.
The solution lies in a queue in which the moment "rear" reaches its end; the "first"
element will become the queue's new "rear". This type of queue is known as
circular queue having a structure like this in which, once the Queue is full the
"First" element of the Queue becomes the "Rear" most element, if and only if the
"Front" has moved forward;
Circular Queue using array:-

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 20

insert(queue,n,front,rear,item)
This procedure inserts an element item into a queue.

1. If front = 1 and rear = n, or if front = rear

+ 1, then:

 Write: overflow, and return

2. [find new value of rear]

If front = NULL , then : [queue initially empty.]

 Set front = 1 and rear=1.

Else if rear = n, then:

 Set rear=1.

Else:

 Set rear = rear + 1.

[end of structure.]

3. Set queue[rear] = item. [this inserts new

element.]

4.Return .

delete(queue,n,front,rear,item)
This procedure deletes an element from a queue and

assigns it to the variable item.

1. [queue already empty?]

If front = NULL , then:

 Write: underflow, and return.

2. Set item = queue[front].

3. [find new value of front]

If front = rear , then : [queue has only one

element to start].

 Set front = NULL and rear = NULL.

Else if front = n, then:

 Set front=1.

Else:

 Set front = front + 1.

[end of structure.]

4. Return .

Q.8 Given a set of input representing the nodes of a binary tree, write a non

recursive algorithm that must be able to output the three traversal orders.
Write an algorithm for checking validity of the input, i.e., the program must
know if the input is disjoint, duplicated and has a loop. (10)

 Ans:

 Pre-order Traversal

 The process of doing a pre-order traversal iteratively then has the
following steps(assuming that a stack is available to hold pointers to the
appropriate nodes):
1. push NULL onto the stack

2. start at the root and begin execution

3. write the information in the node

4. if the pointer to the right is not NULL push

the pointer onto the stack

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 21

5. if the pointer to the left is not NULL move

the pointer to the node on the left

6. if the pointer to the left is NULL pop the

stack

7. repeat steps 3 to 7 until no nodes remain

 In-order Traversal

 This process when implemented iteratively also requires a stack and a
Boolean to prevent the execution from traversing any portion of a tree
twice. The general process of in-order traversal follows the following
steps:
1. push a NULL onto the stack.

2. beginning with the root, proceed down the

left side of the tree. As long as there is

another left node following the current node,

push the pointer to the current node onto the

stack and move to the left node which follows

it.

3. when there are no more left nodes following

the current node, process the current node.

4. check to see if the last left node has a

right node(it obviously doesn’t have a left

node).

5. if there is a right node then there is

subtree to the right. This should be processed

in following steps 2 to 4.

6. if there is no right node then pop the last

node from the stack (back up one node). Process

this node and since this node has a left subtree

that has already been processed, move to the

right of the node and begin looking for a left

and right subtree again.

 Post-order Traversal

This can be done both iteratively and recursively. The iterative solution
would require a modification of the in-order traversal algorithm.

Q.9 Two linked lists contain information of the same type in ascending order.
 Write a module to merge them to a single linked list that is sorted. (7)

Ans:
merge(struct node *p, struct node *q, struct **s)

{

 struct node *z;

 z = NULL;

 if((x= =NULL) && (y = =NULL))

 return;

 while(x!=NULL && y!=NULL)

 {

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 22

 if(*s= =NULL)

 {

 *s=(struct link *)malloc(sizeof(struct node *z));

 z=*s;

 }

 else

 {

z-->link=(struct link *)malloc(sizeof(struct node *));

 z=z-->link;

 }

 if(x-->data < y-->data)

 {

 z-->data=x-->data;

 x=x-->link;

 }

 else if(x-->exp > y-->exp)

 {

 z-->data=y-->data;

 y=y-->link;

 }

 else if(x-->data= =y-->data)

 {

 z-->data=y-->data;

 x=x-->link;

 y=y-->link;

 }

 }

 while(x!=NULL)

 {

 z�link = struct link *malloc(sizeof(struct node *));

 z=z�link;

 z-->data=x-->data;

 x=x-->link;

 }

 while(y!=NULL)

 {

 z�link = struct link *malloc(sizeof(struct node *));

 z=z�link;

 z-->data=y-->data;

 y=y-->link;

 }

 z-->link=NULL;

}

Q.10 What is a Binary Search Tree (BST)? Make a BST for the following sequence
of numbers.

 45, 36, 76, 23, 89, 115, 98, 39, 41, 56, 69, 48
 Traverse the tree in Preorder, Inorder and postorder. (8)

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 23

 Ans:
A binary search tree B is a binary tree each node of which satisfies the following

conditions:

1. The value of the left-subtree of ‘x’ is less than the value at ‘x’
2. The value of the right-subtree of ‘x’ is greater than value at ‘x’
3. the left-subtree and right-subtree of binary search tree are again binary search
tree.

Preorder:-

23, 36, 39, 41, 45, 48, 56, 69, 76, 89, 98, 115
Inorder:-

45, 36, 23, 39, 41, 76, 56, 48, 69, 89, 115, 98
Postorder:-

23, 41, 39, 36, 48, 69, 56, 98, 115, 89, 76

Q.11 What are expression trees? Represent the following expression using a tree.
Comment on the result that you get when this tree is traversed in Preorder,
Inorder and postorder. (a-b) / ((c*d)+e) (6)

Ans:
 The leaves of an expression tree are operands, such as constants or variable
names, and the other nodes contain operators. This particular tree happens to be
binary, because all of the operations are binary, and although this is the simplest
case, it is possible for nodes to have more than two children. It is also possible for
a node to have only one child, as is the case with the unary minus operator. We
can evaluate an expression tree, T, by applying the operator at the root to the
values obtained by recursively evaluating the left and right subtrees.

45

36

23 39

76

56 89

48 69 115

98

41

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 24

The expression tree for the expression: (a – b) / ((c * d) + e))

 The traversal of the above expression tree gives the following result:-
 Preorder:- (/ - a b + * c d e)

 This expression is same as the “prefix notation” of the original expression.
 Inorder:- (a – b) / ((c * d) + e)

 Thus the inorder traversal gives the actual expression.
 Postorder:- (a b – c d * e + /)

 Thus the postorder traversal of this gives us the “posfix notation” or the
“Reverse Polish notation” of the original expression.

Q.12 How do you rotate a Binary Tree? Explain right and left rotations with the help of

an example. (8)

Ans:
Rotations in the tree:

If after inserting a node in a Binary search tree, the balancing factor (height of left

subtree - height of right subtree) of each node remains 0, 1 and -1 then there is no

need of modification of original tree. If balancing factor of any node is either +2

or -2, the tree becomes unbalanced. It can be balanced by using left rotation or

right rotation or a combination of both.

For example

1. In the following tree, after inserting node 70 , the balance factor of tree at the

root node (2) so the tree is rotated left to have a height balanced tree shown by

(a) to (b):

/

-

a b

+

* e

c d

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 25

2. In the following tree, after inserting 10 the balance factor of tree at root node
is +2 so the tree is rotated right to have height balanced tree as shown by(a) to
(b) below:

Q.13 Taking a suitable example explains how a general tree can be represented as a
Binary Tree. (6)

Ans:
Conversion of general trees to binary trees:

A general tree can be converted into an equivalent binary tree. This conversion
process is called the natural correspondence between general and binary trees.

The algorithm is as follows:
(a) Insert edges connecting siblings from left to right at the same level.
(b) Delete all edges of a parent to its children except to its left most offspring.

35

20 60

45 65

70

0

-1

-1

0

0

-2

35

70

60

20 45

65

0
0

0

0

0

-1
Rotate left

(a)

35

30 50

25
33

10

0

+1

0

0

+1
0

+2 30

25
35

+1

0

-1

10

0
0

33 50

0

Rotate right

(b)

(a) (b)

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 26

(c) Rotate the resultant tree 450 to mark clearly left and right subtrees.
A general tree shown in figure (a) converted into a binary tree shown in (b)

Q.14 What are the different ways of representing a graph? Represent the following

graph using those ways. (6)

Ans:

The different ways of representing a graph is:

Adjacency list representation: This representation of graph consists of an array
Adj of |V| lists, one for each vertex in V. For each uεV, the adjacency list Adj[u]
contains all the vertices v such that there is an edge (u,v)ε E that is Adj[u] consists
of all the vertices adjacent to u in G. The vertices in each adjacency list are stored
in an arbitrary order. The adjacency list representation of given graph is depicted
in the following figure:

A
B

E F C

G

D

H

K L

I J

A

B

E F

C D

G H I J

K L

(a)

(b)

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 27

Adjacency Matrix representation: This representation consists of |V|*|V| matrix
A= (aij) such that

 1 if(i,j)ε E
 aij =

 0 otherwise

The adjacency matrix representation of given graph is given below:

 A B C D E

 A

 B

 C

 D

 E

Q.15 Show the result of running BFS and DFS on the directed graph given below

using vertex 3 as source. Show the status of the data structure used at each
stage. (8)

A

B

C

D

E

B C E

C

B

B

C

D

NULL

NULL

NULL

NULL

NULL

 0 1 1 0 1

 0 0 1 0 0

 0 0 0 0 0

 0 1 1 0 0

 0 1 0 1 0

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 28

 Ans:

 Depth first search (DFS):

Depth first search (DFS) starting from vertex 3 as source and traversing above
adjacency list one by one, we get following result:

 3-7-2-8-6-5-4-1

Breath First Search(BFS):

Q
Elements are inserted from rear and deleted from front. Before removal of an
element, insert its element in the queue. So result of BFS in the given graph is:
3-7-2-8-6-5-4-1

Q.16 Write an algorithm for finding solution to the Tower’s of Hanoi problem.
Explain the working of your algorithm (with 4 disks) with diagrams. (5)

 Ans:
void Hanoi(int n, char initial, char temp, char

final)

{ if(n==1)

 { printf(“move disk 1 from peg %c to

peg%c\n”,initial,final);

 return;

 }

Hanoi(n-1,initial, final, temp);

printf(“move disk %d from peg %c to peg%c\n”, n,

initial, final);

Hanoi(n-1,temp,initial,final);

}

3 7 2 8 6 5 4 1

1

2

3

4

5

8 2 7

3 5

NULL

NULL

NULL

NULL

NULL
6

7

8

7 2 8 6

NULL

5 4

7

NULL

NULL

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 29

For n=4, let A, B and C denotes the initial, temp and final peg. Using above
algorithm, the recursive solution for n=4 disks consists of the following 15
moves:

A B A C B C A B

C A C B A B A C

B C B A C A B C

A B A C B C

Q.17 Reverse the order of elements on a stack S
 (i) using two additional stacks.
 (ii) using one additional queue.
 (9)

Ans: Let S be the stack having n elements. We need to reverse the elements of S

(i) using two additional stack S1 and S2

while not empty (S)

{ C=pop(S);

 push(S1,C);

}

While not empty(S1)

{ C=pop(S1);

 push(S2,C);

}

While not empty(S3)

{ C=pop(S3);

 push(S,C);

}

(ii) using one additional queue Q
while not empty (S)

{ C=pop(S);

 enque(Q,C);

}

While not empty(Q)

{ C=deque(Q);

 push(S,C);

}

Q.18 Explain the representations of graph. Represent the given graph using any two
methods (8)

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 30

Ans:
The different ways of representing a graph is:
Adjacency list representation: This representation of graph consists of an array
Adj of |V| lists, one for each vertex in V. For each uεV, the adjacency list Adj[u]
contains all the vertices v such that there is an edge (u,v)ε E that is Adj[u] consists
of all the vertices adjacent to u in G. The vertices in each adjacency list are stored
in an arbitrary order. The adjacency list representation of given graph is depicted
in the following figure:

Adjacency Matrix representation: This representation consists of |V|*|V| matrix
A=(aij) such that

 1 if(i,j)ε E
aij=

 0 otherwise

The adjacency matrix representation of given graph is given below

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 31

Q.19 Write short notes on any FOUR:-
(i) B Tree.
(ii) Time Complexity, Big O notation.
(iii) Merge Sort.
(iv) Threaded Binary Tree.
(v) Depth First Traversal.

 (3.5 x 4 = 14)
Ans:

(i) B Tree:
Unlike a binary-tree, each node of a B-tree may have a variable number of keys
and children. The keys are stored in non-decreasing order. Each key has an
associated child that is the root of a subtree containing all nodes with keys less
than or equal to the key but greater than the preceeding key. A node also has an
additional rightmost child that is the root for a subtree containing all keys greater
than any keys in the node.
A B-tree has a minimum number of allowable children for each node known as
the minimization factor. If t is this minimization factor, every node must have at
least t - 1 keys. Under certain circumstances, the root node is allowed to violate
this property by having fewer than t - 1 keys. Every node may have at most 2t - 1
keys or, equivalently, 2t children.
For n greater than or equal to one, the height of an n-key b-tree T of height h with
a minimum degree t greater than or equal to 2, h≤logt (n+1/2)
(ii) Time Complexity, Big O notation: The amount of time needed by an
algorithm to run to its completion is referred as time complexity. The asymptotic
running time of an algorithm is defined in terms of functions. The upper bound
for the function ‘f’ is provided by the big oh notation (O). Considering ‘g’ to be a
function from the non-negative integers to the positive real numbers, we define
O(g) as the set of function f such that for some real constant c>0 and some non
negative integers constant n0 , f(n)≤cg(n) for all n≥n0.

Mathematically,O(g(n))={f(n): there exists positive constants such that 0≤f
f(n)≤cg(n) for all n, n≥n0} , we say “f is oh of g”
(iii) Merge sort: Merge sort is a sorting algorithm that uses the idea of divide
and conquers. This algorithm divides the array into two halves, sorts them
separately and then merges them. This procedure is recursive, with the base
criterion-the number of elements in the array is not more than 1. Suppose variable
low and high represents the index of the first and last element of the array
respectively, the merge sort can be defined recursively as

If(low<high) then

Divide the list into two halves

Mergesort the left half

Mergesort the right half

Mergesort the two sorted halves into one sorted list

Endif.

(iv) Threaded Binary Tree :If a node in a binary tree is not having left or right
child or it is a leaf node then that absence of child node is represented by the null
pointers. The space occupied by these null entries can be utilized to store some
kind of valuable information. One possible way to utilize this space is to have
special pointer that point to nodes higher in the tree that is ancestors. These
special pointers are called threads and the binary tree having such pointers is

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 32

called threaded binary tree. There are many ways to thread a binary tree each of
these ways either correspond either in-order or pre-order traversal of T.A
Threaded Binary Tree is a binary tree in which every node that does not have a
right child has a THREAD (in actual sense, a link) to its INORDER successor. By
doing this threading we avoid the recursive method of traversing a Tree, which
makes use of stacks and consumes a lot of memory and time.

The node structure for a threaded binary tree varies a bit and its like this
struct NODE

{

 struct NODE *leftchild;

 int node_value;

 struct NODE *rightchild;

 struct NODE *thread;

}

Let's make the Threaded Binary tree out of a normal binary tree...

The INORDER traversal for the above tree is -- D B A E C. So, the respective
Threaded Binary tree will be --

B has no right child and its inorder successor is A and so a thread has been made
in between them. Similarly, for D and E. C has no right child but it has no inorder
successor even, so it has a hanging thread.
(v) depth-first traversal :A depth-first traversal of a tree visits a node and then
recursively visits the subtrees of that node. Similarly, depth-first traversal of a
graph visits a vertex and then recursively visits all the vertices adjacent to that
node. The catch is that the graph may contain cycles, but the traversal must visit
every vertex at most once. The solution to the problem is to keep track of the
nodes that have been visited, so that the traversal does not suffer the fate of
infinite recursion.

Q.20 Define the term array. How are two-dimensional arrays represented in
memory? Explain how address of an element is calculated in a two
dimensional array. (8)

Ans:
An array is a way to reference a series of memory locations using the same name.
Each memory location is represented by an array element. An array element is

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 33

similar to one variable except it is identified by an index value instead of a name.
An index value is a number used to identify an array element.
Declaring a two dimensional array- A two dimensional array is declared similar
to the way we declare a one-dimensional array except that we specify the number
of elements in both dimensions. For example,
int grades[3][4];
The first bracket ([3]) tells the compiler that we are declaring 3 pointers, each
pointing to an array. We are not talking about a pointer variable or pointer array.
Instead, we are saying that each element of the first dimension of a two
dimensional array reference a corresponding second dimension. In this example,
all the arrays pointed to by the first index are of the same size. The second index
can be of variable size. For example, the previous statement declares a two-
dimensional array where there are 3 elements in the first dimension and 4
elements in the second dimension.
Two-dimensional array is represented in memory in following two ways:

1. Row major representation: To achieve this linear representation, the first row
of the array is stored in the first memory locations reserved for the array, then
the second row and so on.

2. Column major representation: Here all the elements of the column are stored
next to one another.

In row major representation, the address is calculated in a two dimensional array
as per the following formula.The address of a[i][j]=base(a)+(i*m+ j)*size
where base(a) is the address of a[0][0], m is second dimension of array a and size
represent size of the data type.

Q.21 An, array, A contains n unique integers from the range x to y (x and y
inclusive where n=y-x). That is, there is one member that is not in A. Design
an O(n) time algorithm for finding that number. (8)

 Ans:
The algorithm for finding the number that is not array A where n contains n

unique (n = x - y):
 find(int A[],n,x,y)

 {

 int i,missing_num,S[n];

for(i=0, i<n, i++)S[i] = -999;
for(i=0, i<n, i++)S[A[i]-x]=A[i];
for(i=0, i<n, i++)
{if(S[i] == -999)
 {
 missing_num = i + x;
 break;
 }

 }
 }

Q.22 Draw the expression tree of the following infix expression. Convert it in to
Prefix and Postfix expressions.

 () ()() ()hg*fed*cba +++++ (9)

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 34

 Ans:

 The expression is:
 ((a+b)+c*(d+e)+f)*(g+h)

The postfix expression is:

((a+b)+c*(d+e)+f)*(g+h)
= ((ab+)+c*(de+)+f)*(gh+)
= ((ab+)+(cde+*)+f)*(gh+)
= ((ab+cde+*+)+f)*(gh+)
= (ab+cde+*+f+)*(gh+)
=(ab+cde+*+f+gh+*)

The prefix expression is:

((a+b)+c*(d+e)+f)*(g+h)
= ((+ab)+c*(+de)+f)*(+gh)
= ((+ab)+(*c+de)+f)*(+gh)
= ((++ab*c+de)+f)*(+gh)
= (+++ab*c+def)*(+gh)
= (*+++ab*c+def+gh)

Q.23 Implement a Queue using a singly linked list L. The operations INSERT and
DELETE should still take O (1) time. (6)

Ans:

Implementation of queue using a singly linked list:

While implementing a queue as a single liked list, a queue q consists of a list and
two pointers, q.front and q.rear.

*

h

+

+

f

+

*

g +

+

e

a c

d

b

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 35

inserting an element is as follows:
insert(q,x)

{

 p=getnode();

 info(p) = x;

 next(p) = null;

 if(q.rear == null)

 q.front = p;

 else

 next(q.rear) = p;

 q.rear = p;

}

deletion is as follows:
remove(q)

{

 if(empty(q))

 {

 printf("queue overflow");

 exit(1);

 }

 p=q.front;

 x=info(p);

 q.front=next(p);

 if(q.front == null)

 q.rear = null;

 freenode(p);

 return(x);

}

Q.24 Explain how to implement two stacks in one array A[1..n] in such a way that
neither stack overflows unless the total number of elements in both stacks
together is n. The PUSH and POP operations should run in O(1) time. (10)

Ans:
Two stacks s1 and s2 can be implemented in one array A[1,2,…,N] as shown in
the following figure

We define A[1] as the bottom of stack S1 and let S1 “grow” to the right and we
define A[n] as the bottom of the stack S2 and S2 “grow” to the left. In this case,
overflow will occur only S1 and S2 together have more than n elements. This
technique will usually decrease the number of times overflow occurs. There will
separate push1, push2, pop1 and pop2 functions to be defined separately for two
stacks S1 and S2.

S1 S2

1

S1

2 3 4 n-3 n-2 n-1 n

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 36

Q.25 Two Binary Trees are similar if they are both empty or if they are both non-
empty and left and right sub trees are similar. Write an algorithm to determine
if two Binary Trees are similar. (8)

Ans:

We assume two trees as tree1 and tree2. The algorithm to determine if two
Binary trees are similar or not is as follows:

similar(*tree1,*tree2)

{

 while((tree1!=null) && (tree2!=null))

 {

 if((tree1->root) == (tree2->root))

 similar(tree1->left,tree2->left);

 similar(tree1->right,tree2->right);

elseif(tree->root!= tree2->node){printf(“Trees

are not equal”);

return;}

 }

 }

Q.26 The degree of a node is the number of children it has. Show that in any binary tree, the
number of leaves are one more than the number of nodes of degree 2 (8)

Ans:

Let n be the number of nodes of degree 2 in a binary tree T. We have to show
that number of leaves in T is n+1. Let us prove it by induction.
For n=1, the result is obvious that the leaves are two i.e. 1+1.

 Let the formulae is true for n=k, i.e. if there are n nodes of degree 2 in T then
T has k+1 leaves.

 If we add two children to one of the leaf node then, number nodes with degree
two will be k+1 and number of leaf node will be (k+1)-1+2 = (k+1)+1. Hence
we can conclude by induction that if a binary tree t has n nodes of degree 2
then it has n+1 leaves.

Q.27 Write the non-recursive algorithm to traverse a tree in preorder. (8)

Ans:
The Non- Recursive algorithm for preorder traversal is as follows: Initially
push NULL onto stack and then set PTR=Root. Repeat the following steps until
PTR= NULL.
1. Preorder down the left most path routed at PTR.
2. Processing each node N on the path and pushing each right child if any onto
the stack.[The traversing stops when (PTR)=NULL]
3. Backtracking: pop and assign to PTR the top element on stack. If PTR not
equal to NULL then return to step 1 otherwise exit.

Q.28 Give the adjacency matrix for the following graph: (4)

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 37

Ans:

Adjacency matrix for the given graph
 A B C D E F G H I
 A 0 1 0 0 0 0 0 0 0
 B 0 0 0 1 0 0 0 0 0
 C 0 1 0 0 0 0 0 0 0
 D 0 0 1 0 1 0 0 0 0
 E 0 0 0 0 0 1 0 0 0
 F 0 0 0 0 0 0 1 0 0
 G 0 0 0 0 0 0 0 1 0
 H 0 0 0 0 0 0 0 0 1
 I 0 0 0 0 1 0 0 0 0

Q.29 Draw the complete undirected graphs on one, two, three, four and five

vertices. Prove that the number of edges in an n vertex complete graph is
n(n-1)/2. (8)

 Ans:

The following are the Graphs:

i. One vertex:-

 .A

ii. Two vertices:-

 A B

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 38

iii. Three vertices:-

 A

 B C

iv. Four vertices:-

 A B

 D C

v. Five vertices:-

 B C

A

 E D

From the above Graphs we can see
i. When n=1,

Then number of edges
=n(n-1)/2
= 1(1-1)/2
=1(0)/2
=0/2
=0
Therefore, number of edges = 0.

ii. When n=2,
Then number of edges
=n(n-1)/2
=2(2-1)/2
=2(1)/2
=2/2
=1
Therefore, number of edges = 1.

iii. When n=3,
Then number of edges
=n(n-1)/2

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 39

=3(3-1)/2
=3(2)/2
=6/2
=3
Therefore, number of edges = 3.

iv. When n=4,
Then number of edges
=n(n-1)/2
=4(4-1)/2
=4(3)/2
=12/2
=6
Therefore, number of edges = 6.

v. When n=5,
Then number of edges
=n(n-1)/2
=5(5-1)/2
=5(4)/2
=20/2
=10
Therefore, number of edges = 10.

Q.30 Bubble sort algorithm is inefficient because it continues execution even after

an array is sorted by performing unnecessary comparisons. Therefore, the
number of comparisons in the best and worst cases are the same. Modify the
algorithm in such a fashion that it will not make the next pass when the array
is already sorted. (12)

Ans:
Bubble sort continues execution even after an array is sorted. To prevent
unnecessary comparisons we add a Boolean variable say switched and initialize it
by True in the beginning. Along with the “for” loop, we add the condition
(switched=true) and make it false inside the outer for loop. If a swapping is made
then the value of switched is made true. Thus if no swapping is done in the first
pass, no more comparisons will be done further and the program shall exit.
The algorithm after modifying it in the above mentioned manner will be as

follows:-
void bubble(int x[],int n)

{

 int j,pass,hold;

 bool switched=true;

 for(pass=0;pass<n-1 && switched=true;pass++)

 {

 switched=false;

 for(j=0;j<n-pass-1;j++)

 {

 switched=true;

 hold=x[j];

 x[j]=x[j+1];

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 40

 x[j+1]=hold;

 }

 }

}

Q.31 Which sorting algorithm is easily adaptable to singly linked lists? Explain
your answer. (4)

 Ans:

 Simple Insertion sort is easily adabtable to singly linked list. In this method there
is an array link of pointers, one for each of the original array elements. Initially
link[i] = i + 1 for 0 < = i < n-1 and link[n-1] = -1. Thus the array can be thought
of as a linear link list pointed to by an external pointer first initialized to 0. To
insert the kth element the linked list is traversed until the proper position for x[k]
is found, or until the end of the list is reached. At that point x[k] can be inserted
into the list by merely adjusting the list pointers without shifting any elements in
the array. This reduces the time required for insertion but not the time required for
searching for the proper position. The number of replacements in the link array is
O(n).

Q.32 Sort the following sequence of keys using merge sort.
 66, 77, 11, 88, 99, 22, 33, 44, 55 (8)

Ans:
Sorting using Merge sort:-

 Original File [66] [77] [11] [88] [99] [22] [33] [44] [55]
Pass1 [66 77] [11 88] [22 99] [33 44] [55]
Pass2 [11 66 77 88] [22 33 44 99] [55]
Pass3 [11 22 33 44 66 77 88 99] [55]
Pass4 [11 22 33 44 55 66 77 88 99]

Q.33 Draw a B-tree of order 3 for the following sequence of keys:
 2, 4, 9, 8, 7, 6, 3, 1, 5, 10 (8)

Ans:
The B-tree of order 3 for the following data:-
 2 4 9 8 7 6 3 1 5 10

4

2

1 3

6 8

9 10 7 5

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 41

Q.34 What do you mean by complexity of an algorithm? Explain the meaning of
worst case analysis and best case analysis with an example. (8)

Ans:

The complexity of an algorithm M is the function f(n) which gives the running
time and/or storage space requirement of the algorithm in terms of the size n of
the input data. Frequently, the storage space required by an algorithm is simply a
multiple of the data size n. Therefore, the term “complexity” shall refer to the
running time of the algorithm.
We find the complexity function f(n) for certain cases. The two cases one usually
investigates in complexity theory are :-
i. Worst case:- the maximum value of f(n) for any possible input
ii. Best case:- the minimum possible value of f(n)
For example:-
If we take an example of linear search in which an integer Item is to searched in
an array Data. The complexity if the search algorithm is given by the number C of
comparisons between Item and Data[k].
Worst case:-
The worst case occurs when Item is the last element in the array Data or is it not
there at all. In both the cases, we get

 C(n)=n
The average case, we assume that the Item is present it the array and is likely to
be present in any position in the array. Thus, the number of comparisons can be
any of the numbers 1, 2, 3……..n and each number occurs with probability
p = 1/n.
C(n) = 1. 1/n + 2.1/n + … + n.1/n

 = (n+1) / 2
thus the average number of comparisons needed to locate the Item in to array Data
is approximately equal to half the number of elements in the Data list.

Q.35 Explain the method to calculate the address of an element in an array. A

425× matrix array DATA is stored in memory in ‘row-major order’. If base

address is 200 and 4=ω words per memory cell. Calculate the address of
DATA [12, 3] . (8)

Ans:
 In a row major representation, the address of any element a[i][j] can be found
using the following formula: a[i][j]=base(a)+(i*m+j)*size
where base(a) is base address, m is the no. of columns and size represent size of
word.
DATA[12,3]=200+(12*4+3)*4

 =200+(48+3)*4
 =200+51*4

 =200+204
 =404

Q.36 What is the difference between a grounded header link list and a circular header

link list? (3)

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 42

 Ans:

A header linked list is a linked list which always contains a special node, called
the header node, at the beginning of the list. The two kinds of header linked lists
are:-
i. Grounder header linked list
ii. Circular header linked list
The difference between the two is that-
A grounded header list is a header list where the last node contains the null
pointer.
A circular header list is a header list where the last node points back to the header
node.

Q.37 Write an algorithm to insert a node in the beginning of the linked list. (7)

Ans:

/* structure containing a data part and link part */
struct node

{

 int data ;

 struct node * link ;

} ;

/* Following adds a new node at the beginning of the linked list */
void addatbeg (struct node **q, int num)

{

 struct node *temp ;

 /* add new node */

 temp = malloc (sizeof (struct node)) ;

 temp -> data = num ;

 temp -> link = *q ;

 *q = temp ;

}

Q.38 Write an algorithm which does depth first search through an un-weighted
connected graph. In an un-weighted graph, would breadth first search or depth
first search or neither find a shortest path tree from some node? Why? (8)

Ans:
An algorithm that does depth first search is given below:

struct node

{

 int data ;

 struct node *next ;

} ; int visited[MAX] ;

void dfs (int v, struct node **p)

{

 struct node *q ;

 visited[v - 1] = TRUE ;

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 43

 printf ("%d\t", v) ;

 q = * (p + v - 1) ;

 while (q != NULL)

 {

 if (visited[q -> data - 1] == FALSE)

 dfs (q -> data, p) ;

 else

 q = q -> next ;}

 }

Q.39 Convert the following infix expressions into its equivalent postfix expressions;

 (i) () () GFE/DBA +−↑+

 (ii) () ()KHG*FE/DB*A +−+ (8)

Ans:

(i). (A + B ^ D) / (E -F) + G

= (A + B D ^) / (E F -) + G

= (A B D ^ +) / (E F -) + G

= (A B D ^ + E F - /) + G

= (A B D ^ + E F - / G +)

the postfix expression is :- (A B D ^ + E F - / G +)

 (ii). A * (B + D) / E – F * (G + H / K)

= A * (B D +) / E – F * (G + H / K)

= A * (B D +) / E – F * (G + H K /)

= A * (B D +) / E – F * (G H K / +)

= (A B D + *) / E – F * (G H K / +)

= (A B D + * E /) – F * (G H K / +)

= (A B D + * E /) – (F G H K / + *)

= (A B D + * E / F G H K / + * -)

the postfix expression is :- (A B D + * E / F G H K / + * -)

Q.40 What is quick sort? Sort the following array using quick sort method.
 24 56 47 35 10 90 82 31 (7)

Ans:
 Quick sort is a sorting algorithm that uses the idea if divide and conquer. This
algorithm chooses an element known as pivot element, finds its position in the
array such that it divides the array into two sub arrays. The elements in the left
sub array are less than and the elements in the right sub array are greater than the

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 44

dividing element. Then the algorithm is repeated separately for these two sub
array.
The given data is :-

 24 56 47 35 10 90 82 31

Pass 1:- (10) 24 (56 47 35 90 82 31)

Pass 2:- 10 24 (56 47 35 90 82 31)

Pass 3:- 10 24 (47 35 31) 56 (90 82)

Pass 4:- 10 24 (35 31) 47 56 (90 82)

Pass 5:- 10 24 (31) 35 47 56 (90 82)

Pass 6:- 10 24 31 35 47 56 (90 82)

Pass 7:- 10 24 31 35 47 56 (82) 90

Pass 8:- 10 24 31 35 47 56 82 90

Q.41 How many key comparisons and assignments an insertion sort makes in its
worst case? (4)

Ans:

 The worst case performance in insertion sort occurs when the elements of the
input array are in descending order. In that case, the first pass requires one
comparison, the second pass requires two comparisons, third pass three
comparisons,….kth pass requires (k-1), and finally the last pass requires (n-1)
comparisons. Therefore, total numbers of comparisons are:
 f(n) = 1+2+3+………+(n-k)+…..+(n-2)+(n-1)

 = n(n-1)/2
 = O(n2)

Q.42 Create a heap with following list of keys:
 8, 20, 9, 4, 15, 10, 7, 22, 3, 12 (5)

Ans:
Creation of a heap:- 8 20 9 4 15 10 7 22 3 12

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 45

Q.43 The following values are to be stored in a hash table
 25, 42, 96, 101, 102, 162, 197
 Describe how the values are hashed by using division method of hashing with

a table size of 7. Use chaining as the method of collision resolution. (8)

Ans:

Table size=7
25%7=4
42%7=0
96%7=5
101%7=3
102%7=4
162%7=1
197%7=1

So collision resolution can be resolved as follows:

Q.44 Write an algorithm INSERT that takes a pointer to a sorted list and a pointer to
a node and inserts the node into its correct position in the list. (8)

0

1

2

3

4

42

162

101

25

C

102

192

NULL

5

6

96

NULL

NULL

NULL

NULL

NULL

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 46

Ans:

/* structure containing a data part and link part */
struct node

{

 int data ;

 struct node *link ;

} ;

/* Following inserts node to an ascending order linked list

*/

void INSERT (struct node **q, int num)

{

 struct node *r, *temp = *q ;

 r = malloc (sizeof (struct node)) ;

 r -> data = num ;

 /* if list is empty or if new node is to be inserted

before the first node */

 if (*q == NULL || (*q) -> data > num)

 {

 *q = r ;

 (*q) -> link = temp ;

 }

 else

 {

 /* traverse the entire linked list to search the

position to insert the

 new node */

 while (temp != NULL)

 {

if (temp -> data <= num && (temp -> link -> data > num ||

temp -> link == NULL))

 {

 r -> link = temp -> link ;

 temp -> link = r ;

 return ;

 }

 temp = temp -> link ; /* go to the next node */ }

 }

}

Q.45 Write a non recursive algorithm to traverse a binary tree in inorder. (8)

Ans:

Non – recursive algorithm to traverse a binary tree in inorder:-
Initially push NULL onto STACK and then set PTR =

ROOT. Then repeat the following steps until NULL is

popped from STACK.

i. Proceed down the left –most path rooted at PTR,

pushing each node N onto STACK and stopping when

a node N with no left child is pushed onto

STACK.

ii. [Backtracking.] Pop and process the nodes on

STACK. If NULL is popped then Exit. If a node N

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 47

with a right child R(N) is processed, set PTR =

R(N) (by assigning PTR = RIGHT[PTR] and return

to Step(a)).

Q.46 Describe insertion sort with a proper algorithm. What is the complexity of
insertion sort in the worst case? (8)

Ans:
 Insertion Sort: One of the simplest sorting algorithms is the insertion sort.

Insertion sort consists of n - 1 passes. For pass p = 2 through n, insertion sort
ensures that the elements in positions 1 through p are in sorted order. Insertion
sort makes use of the fact those elements in positions 1 through p - 1 are already
known to be in sorted order.
Void insertion_sort(input_type a[], unsigned int n)

{

unsigned int j, p;

input_type tmp;

 a[0] = MIN_DATA; /* sentinel */

 for(p=2; p <= n; p++)

{

 tmp = a[p];

 for(j = p; tmp < a[j-1]; j--)

 a[j] = a[j-1];

 a[j] = tmp;

 }

}

Because of the nested loops, each of which can take n iterations, insertion sort is
O(n2). Furthermore, this bound is tight, because input in reverse order can actually
achieve this bound. A precise calculation shows that the test at line 4 can be
executed at most p times for each value of p. Summing over all p gives a total of
(n(n-1))/2 = O(n2).

Q.47 Which are the two standard ways of traversing a graph? Explain them with an

example of each. (8)

Ans:

 The two ways of traversing a graph are as follows:-

i. The depth-first traversal of a graph is like the depth-first traversal of a tree.
Since a graph has no root, when we do a depth-first traversal, we must specify the
vertex at which to begin. Depth-first traversal of a graph visits a vertex and then
recursively visits all the vertices adjacent to that node. The catch is that the graph
may contain cycles, but the traversal must visit every vertex at most once. The
solution to the problem is to keep track of the nodes that have been visited, so that
the traversal does not suffer the fate of infinite recursion.
ii. The breadth-first traversal of a graph is like the breadth-first traversal of a
tree. Breadth-first tree traversal first visits all the nodes at depth zero (i.e., the
root), then all the nodes at depth one, and so on. Since a graph has no root, when
we do a breadth-first traversal, we must specify the vertex at which to start the

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 48

traversal. Furthermore, we can define the depth of a given vertex to be the length
of the shortest path from the starting vertex to the given vertex.
Thus, breadth-first traversal first visits the starting vertex, then all the vertices
adjacent to the starting vertex, and the all the vertices adjacent to those, and so on.

Q.48 Consider the following specification of a graph G

 () { }4,3,2,1GV =

 () () () () () (){ }1,4,4,3,3,3,3,1,2,1GE =

(i) Draw an undirected graph.
(ii) Draw its adjacency matrix. (8)

Ans:
 V(G) = {1,2,3,4}

E(G) = {(1,2),(1,3),(3,3,),(3,4),(4,1)}
(i). The undirected graph will be as follows:-

 (ii). The adjacency matrix will be as follows:-

Q.49 Write short notes on the following:
 (i) B-tree.

(ii) Abstract data type.
(iii) Simulation of queues. (5+6+5)

Ans:

 (i) B-tree:-

Just as AVL trees are balanced binary search trees, B-trees are balanced M-way
search trees. By imposing a balance condition, the shape of an AVL tree is
constrained in a way which guarantees that the search, insertion, and withdrawal

2

4

3

1

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 49

operations are all O(log n), where n is the number of items in the tree. The shapes
of B-Trees are constrained for the same reasons and with the same effect.
A B-Tree of order M is either the empty tree or it is an M-way search tree T with
the following properties:

a. The root of T has at least two subtrees and at most M subtrees.
b. All internal nodes of T (other than its root) have between [M / 2] and M

subtrees.
c. All external nodes of T are at the same level.

(ii)Abstract Data Types:- A useful tool for specifying the logical properties of a
data type is the abstract data type or ADT. The term “abstract data type” refers to
the basic mathematical concept that defines the data type. In defining ADT as a
mathematical concept, we are not concerned with space or time efficiency.
An ADT consists of two parts:- a value definition and an operator definition. The
value definition defines the collection of values for the ADT and consists of two
parts: a definition clause and a condition clause. For example, the value consist
definition for the ADT RATIONAL states that a RATIONAL value consists of
two integers, the second of which does not equal 0. We use array notation to
indicate the parts of an abstract type.
(iii) Simulation of queues: Simulation is the process of forming an abstract
model of a real world situation in order to understand the effect of modifications
and the effect of introducing various strategies on the situation. The simulation
program must schedule the events in the simulation so the activities will occur in
the correct time sequence. For example, suppose a person visit an outlet at time
‘t1’ to deposit his cellphone bill. The transaction may be expected to take a
certain period of time ‘t2’ to complete. If any of the service window is free, the
person can immediately deposit the bill in time (t1+t2) spending exactly the time
required to deposit the bill. If none of the service window is free and there is
queue waiting at each window. The person joins the smallest queue and waits
until all previous people deposited their bills and left the line. In this case, the
time spends by the person in the bill office in t2+time spends in waiting. Such
problems are solved by writing a program to simulate the actions of the persons.
The various service windows are represented by different queues and each person
waiting in that line is represented by a node in that queue. The node at the front of
the queue represents the person currently being serviced at the window. We can
define various events associated with the process like arrival of a person,
departure of a person etc.
When a departure node is removed from the event list, the amount of time spent
by the departing person is computed and added to a total and the node
representing the person is removed from the front of the queue. After a node has
been deleted from the front of the queue, the next person in the queue becomes
the first to be serviced by that window and a departure node is added to the event
list. At the end of simulation, when the event list is empty, the total will be
divided by the number of persons to get the average time spent by a person.

Q.50 Why do we use a symptotic notation in the study of algorithm? Describe

commonly used asymptotic notations and give their significance. (8)

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 50

Ans:

 The running time of an algorithm depends upon various characteristics and slight
variation in the characteristics varies the running time. The algorithm efficiency
and performance in comparison to alternate algorithm is best described by the
order of growth of the running time of an algorithm. Suppose one algorithm for a
problem has time complexity as c3n

2 and another algorithm has c1n
3 +c2n

2 then it
can be easily observed that the algorithm with complexity c3n

2 will be faster than
the one with complexity c1n

3 +c2n
2 for sufficiently larger values of n. Whatever be

the value of c1, c2 and c3 there will be an ‘n’ beyond which the algorithm with
complexity c3n

2 is faster than algorithm with complexity c1n
3 +c2n

2, we refer this
n as breakeven point. It is difficult to measure the correct breakeven point
analytically, so Asymptotic notation are introduced that describe the algorithm
efficiency and performance in a meaningful way. These notations describe the
behavior of time or space complexity for large instance characteristics. Some
commonly used asymptotic notations are:
Big oh notation (O): The upper bound for the function ‘f’ is provided by the big
oh notation (O). Considering ‘g’ to be a function from the non-negative integers
to the positive real numbers, we define O(g) as the set of function f such that for
some real constant c>0 and some non negative integers constant n0 , f(n)≤cg(n)
for all n≥n0. Mathematically, O(g(n))={f(n): there exists positive constants such
that 0≤f f(n)≤cg(n) for all n, n≥n0} , we say “f is oh of g”.
Big Omega notation (Ω): The lower bound for the function ‘f’ is provided by the
big omega notation (Ω). Considering ‘g’ to be a function from the non-negative
integers to the positive real numbers, we define Ω(g) as the set of function f such
that for some real constant c>0 and some non negative integers constant n0 ,
f(n)≥cg(n) for all n≥n0. Mathematically, Ω(g(n))={f(n): there exists positive
constants such that 0≤cg(n) ≤f(n) for all n, n≥n0}.
Big Theta notation (θ): The upper and lower bound for the function ‘f’ is
provided by the big oh notation (θ). Considering ‘g’ to be a function from the
non-negative integers to the positive real numbers, we define θ(g) as the set of
function f such that for some real constant c1 and c2 >0 and some non negative
integers constant n0 , c1g(n)≤f f(n)≤c2g(n) for all n≥n0. Mathematically,
θ(g(n))={f(n): there exists positive constants c1 and c2 such that c1g(n)≤f
f(n)≤c2g(n) for all n, n≥n0} , we say “f is oh of g”

Q.51 Illustrate the steps for converting an infix expression into a postfix expression

for the following expression () () () gfe/dcba ↑++∗+ . (8)

Ans:

 The given infix expression can be converted to postfix expression as follows:

(a+b)*(c+d)/(e+f)^g

=(ab+)*(cd+)/(ef+)^g

=(ab+)*(cd+)/(ef+g^)

=(ab+cd+*)/(ef+g^)

=(ab+cd+*ef+g^/)

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 51

The postfix expression is:-

(ab+cd+*ef+g^/)

Q.52 Let P be a pointer to a singly linked list. Show how this list may be used as a

stack. That is, write algorithms to push and pop elements. Specify the value of P

when the stack is empty. (8)

Ans:

 Linked list as stack:-

//Declaration of the stack

typedef struct node *node_ptr;

struct node

{

 element_type element;

 node_ptr next;

};

typedef node_ptr STACK;

/* Stack implementation will use a header. */

//Routine to test whether a stack is empty

int is_empty(STACK S)

{

 return(S->next == NULL);

}

//Routine to create an empty stack

STACK create_stack(void)

{

 STACK S;

 S = (STACK) malloc(sizeof(struct node));

 if(S == NULL)

 fatal_error("Out of space!!!");

 return S;

}

void make_null(STACK S)

{

 if(S != NULL)

 S->next = NULL;

 else

 error("Must use create_stack first");

}

//Routine to push onto a stack

void push(element_type x, STACK S)

{

 node_ptr tmp_cell;

tmp_cell = (node_ptr) malloc(sizeof (struct

 node));

 if(tmp_cell == NULL)

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 52

 fatal_error("Out of space!!!");

 else

 {

 tmp_cell->element = x;

 tmp_cell->next = S->next;

 S->next = tmp_cell;

 }

}

// Routine to pop from a stack

void pop(STACK S)

{

 node_ptr first_cell;

 if(is_empty(S))

 error("Empty stack");

 else

 {

 first_cell = S->next;

 S->next = S->next->next;

 free(first_cell);

 }

}

Q.53 How will you represent a max-heap sequentially? Explain with an example. (4)

Ans:

A max heap, also called descending heap, of size n is an almost complete binary
tree of n nodes such that the content of each node is less than or equal to the
content of its father. If the sequential representation of an almost complete binary
tree is used, this condition reduces to the inequality.

Info[j] <= info[(j-1)/2] for 0 <= ((j-1)/2) < j <= n-1
It is clear from this definition that root of the tree contains the largest element in
the heap in the descending heap. Any path from the root to a leaf is an ordered list
in descending order.

Q.54 Write an algorithm to insert an element to a max-heap that is represented

sequentially. (8)

Ans:

 An algorithm to insert an element “newkey” to a max heap of size i-1 where i>=1:
s=i;

parent=s div 2;

key[s]=newkey;

while(s<>0 && key[parent]<=key[s])

{

 /*interchange parent and child*/

 temp=key[parent];

 key[parent]=key[s];

 key[s]=temp;

 s=parent;

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 53

 parent=s div 2;

}

Q.55 Construct a binary tree whose nodes in inorder and preorder are given as
follows:

 Inorder : 10, 15, 17, 18, 20, 25, 30, 35, 38, 40, 50
 Preorder: 20, 15, 10, 18, 17, 30, 25, 40, 35, 38, 50 (10)

Ans:

Construction of a Binary tree whose nodes in inorder and preorder are given as
follows:-

Inorder:- 10, 15, 17, 18, 20, 25, 30, 35, 38, 40, 50

Preorder:- 20, 15, 10, 18, 17, 30, 25, 40, 35, 38, 50

Q.56 Execute your algorithm to convert an infix expression to a post fix expression
with the following infix expression on your input

() () () ()c/bab/g/pk*nm ↑↑++ (8)

 Ans:
The infix expression is:- (m + n)*(k + p) / (g / b) ^ (a ^ b / c)

 SYMB STACK POSTFIX EXPRESSION

 ((

 m (m

 + (+ m

 n (+ mn

) empty mn+

20

30

40

50

15

10 18 25

17
35

38

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 54

 * * mn+

 (*(mn+

 k *(mn+k

 + *(+ mn+k

 p *(+ mn+kp

) * mn+kp+

 / / mn+kp+*

 (/(mn+kp+*

 g /(mn+kp+*g

 / /(/

 b /(/ mn+kp+*gb

) / mn+kp+*gb/

 ^ /^

 (/^(

a /^(mn+kp+*gb/a

 ^ /^(^

 b /^(^ mn+kp+*gb/ab

 / /^(/ mn+kp+*gb/ab^

 c /^(/ mn+kp+*gb/ab^c

) /^ mn+kp+*gb/ab^c/

 mn+kp+*gb/ab^c/^/

 The postfix expression is mn+kp+*gb/ab^c/^/.

Q.57 A double ended queue is a linear list where additions and deletions can be

performed at either end. Represent a double ended queue using an array to store
elements and write modules for additions and deletions. (8)

 Ans:

#include <stdio.h>

#include <conio.h>

#define MAX 10

void addqatbeg (int *, int, int *, int *) ;

void addqatend (int *, int, int *, int *) ;

int delqatbeg (int *, int *, int *) ;

int delqatend (int *, int *, int *) ;

void display (int *) ;

int count (int *) ;

void main()

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 55

{

 int arr[MAX] ;

 int front, rear, i, n ;

 clrscr() ;

 /* initialises data members */

 front = rear = -1 ;

 for (i = 0 ; i < MAX ; i++)

 arr[i] = 0 ;

 addqatend (arr, 17, &front, &rear) ;

 addqatbeg (arr, 10, &front, &rear) ;

 addqatend (arr, 8, &front, &rear) ;

 addqatbeg (arr, -9, &front, &rear) ;

 addqatend (arr, 13, &front, &rear) ;

 addqatbeg (arr, 28, &front, &rear) ;

 addqatend (arr, 14, &front, &rear) ;

 printf ("\nElements in a deque: ") ;

 display (arr) ;

 n = count (arr) ;

 printf ("\nTotal number of elements in deque: %d", n);

 i = delqatbeg (arr, &front, &rear) ;

 printf ("\nItem extracted: %d", i) ;

 i = delqatbeg (arr, &front, &rear) ;

 printf ("\nItem extracted:%d", i) ;

 i = delqatbeg (arr, &front, &rear) ;

 printf ("\nItem extracted:%d", i) ;

 i = delqatbeg (arr, &front, &rear) ;

 printf ("\nItem extracted: %d", i) ;

 printf ("\nElements in a deque after deletion: ") ;

 display (arr) ;

 addqatend (arr, 16, &front, &rear) ;

 addqatend (arr, 7, &front, &rear) ;

printf ("\nElements in a deque after addition: ") ;

 display (arr) ;

 i = delqatend (arr, &front, &rear) ;

 printf ("\nItem extracted: %d", i) ;

 i = delqatend (arr, &front, &rear) ;

 printf ("\nItem extracted: %d", i) ;

 printf ("\nElements in a deque after deletion: ") ;

 display (arr) ;

 n = count (arr) ;

 printf ("\nTotal number of elements in deque: %d", n);

 getch() ;

 }

void addqatbeg (int *arr, int item, int *pfront, int

*prear)

{

/* adds an element at the beginning of a deque */

 int i, k, c ;

 if (*pfront == 0 && *prear == MAX - 1)

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 56

 {

 printf ("\nDeque is full.\n") ;

 return ;

}

 if (*pfront == -1)

 {

 *pfront = *prear = 0 ;

 arr[*pfront] = item ;

 return ;

 }

 if (*prear != MAX - 1)

 {

 c = count (arr) ;

 k = *prear + 1 ;

 for (i = 1 ; i <= c ; i++)

 {

 arr[k] = arr[k - 1] ;

 k-- ;

 }

 arr[k] = item ;

 *pfront = k ;

 (*prear)++ ;

 }

 else

 {

 (*pfront)-- ;

 arr[*pfront] = item ;

 }

}

void addqatend (int *arr, int item, int *pfront, int

*prear)

{

/* adds an element at the end of a deque */

 int i, k ;

 if (*pfront == 0 && *prear == MAX - 1)

 {

 printf ("\nDeque is full.\n") ;

 return ;

 }

 if (*pfront == -1)

 {

*prear = *pfront = 0 ;

 arr[*prear] = item ;

 return ;

 }

 if (*prear == MAX - 1)

 {

 k = *pfront - 1 ;

 for (i = *pfront - 1 ; i < *prear ; i++)

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 57

 {

 k = i ;

 if (k == MAX - 1)

 arr[k] = 0 ;

 else

 arr[k] = arr[i + 1] ;

 }

 (*prear)-- ;

 (*pfront)-- ;

 }

 (*prear)++ ;

 arr[*prear] = item ;

}

int delqatbeg (int *arr, int *pfront, int *prear)

{

/* removes an element from the *pfront end of deque */

 int item ;

 if (*pfront == -1)

 {

 printf ("\nDeque is empty.\n") ;

 return 0 ;

 }

 item = arr[*pfront] ;

 arr[*pfront] = 0 ;

 if (*pfront == *prear)

 *pfront = *prear = -1 ;

 else

 (*pfront)++ ;

 return item ;

}

int delqatend (int *arr, int *pfront, int *prear)

{ /*

removes an element from the *prear end of the deque */

 int item ;

 if (*pfront == -1)

 {

 printf ("\nDeque is empty.\n") ;

 return 0 ;

}

item = arr[*prear] ;

 arr[*prear] = 0 ;

 (*prear)-- ;

 if (*prear == -1)

 *pfront = -1 ;

 return item ;

}

void display (int *arr)

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 58

{ /* displays elements of a

deque */

 int i ;

 printf ("\n front->") ;

 for (i = 0 ; i < MAX ; i++)

 printf ("\t%d", arr[i]) ;

 printf (" <-rear") ;

}

int count (int *arr)

{

/* counts the total number of elements in deque */

 int c = 0, i ;

 for (i = 0 ; i < MAX ; i++)

 {

 if (arr[i] != 0)

 c++ ;

 }

 return c ;

}

Q.58 What do you mean by hashing? Explain any five popular hash functions. (8)

Ans:
 Hashing provides the direct access of record from the file no matter where the

record is in the file. This is possible with the help of a hashing function H which
map the key with the corresponding key address or location. It provides the key-
to-address transformation.
Five popular hashing functions are as follows:
Division Method: An integer key x is divided by the table size m and the
remainder is taken as the hash value. It can be defined as
 H(x)=x%m+1
For example, x=42 and m=13, H(42)=45%13+1=3+1=4
Midsquare Method: A key is multiplied by itself and the hash value is obtained
by selecting an appropriate number of digits from the middle of the square. The
same positions in the square must be used for all keys. For example if the key is
12345, square of this key is value 152399025. If 2 digit addresses is required then
position 4th and 5th can be chosen, giving address 39.
Folding Method: A key is broken into several parts. Each part has the same
length as that of the required address except the last part. The parts are added
together, ignoring the last carry, we obtain the hash address for key K.
Multiplicative method: In this method a real number c such that 0<c<1 is
selected. For a nonnegative integral key x, the hash function is defined as
 H(x)=[m(cx%1)]+1
Here,cx%1 is the fractional part of cx and [] denotes the greatest integer less than
or equal to its contents.
Digit Analysis: This method forms addresses by selecting and shifting digits of
the original key. For a given key set, the same positions in the key and same
rearrangement pattern must be used. For example, a key 7654321 is transformed

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 59

to the address 1247 by selecting digits in position 1,2,4 and 7 then by reversing
their order.

Q.59 What is the best case complexity of quick sort and outline why it is so. How

could its worst case behaviour arise? (6)

Ans:
 In the best case complexity, the pivot is in the middle. To simplify the math, we

assume that the two sub-files are each exactly half the size of the original, and
although this gives a slight overestimate, this is acceptable because we are only
interested in a Big-Oh answer.

T(n) = 2T(n/2) + cn

which yields
T(n) = cn log n + n = O(n log n)

Worst case:- The pivot is the smallest element, all the time. Then i = 0 and if we
ignore T(0) = 1, which is insignificant, the recurrence is T(n) = T(n - 1) + cn, n > 1
which yields

Q.60 Explain Dijkstra’s algorithm for finding the shortest path in a given graph. (6)

 Ans:
 Dijkstra’s algorithm: This problem is concerned with finding the least cost path

from an originating node in a weighted graph to a destination node in that graph.

The algorithm is as follows:
Let G=(V,E) be a simple graph. Let a and z be any two

vertices of the graph. Suppose L(x) denotes the label

of the vertex x which represent the length of shortest

path from the vertex a to the vertex x and wij denotes

the weight of the edge eij=<Vi, Vj>

1. Let P=φ where P is the set of those vertices which

have permanent labels and T={all vertices in the

graph}

Set L(a)=0, L(x)=∞ for all x≠a

2. Select the vertex v in T which has the smallest

label. This label is called permanent label of v.

Also set P=P {v} and T=T-{v}

If v=z then L(z) is the length of the shortest path

from the vertex a to z and stop.

3. If v is not equal z then revise the labels of

vertices of T that is the vertices which do not

have permanent labels.

The new label of vertex x in T is given by

 L(x)=min(old L(x), L(v)+w(v, x))

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 60

Where w(v, x) is the weight of the edge joining the

vertex v and x. If there is no direct edge joining

v and x then take w(v, x)= ∞

4. Repeat steps 2 and 3 until z gets the permanent

label.

Q.61 Find the shortest path from A to Z using Dijkstra’s Algorithm. (10)

Ans:

1. P=φ; T={A,B,C,D,E,F,G,H,I,J,K,L,M,Z}
Let L(A)=0 and L(x)=∞ for all x in T (L(x) denotes label of x)

2. P={A}, T={B,C,D,E,F,G,H,I,J,K,L,M,Z}
A≠Z so calculate new labels for vertices in T

L(B)=min(∞, 0+2)=2 L(H)=min(∞, 0+2)=2

L(C)=min(∞, 0+∞)=∞ L(I)=∞

L(D)=∞ L(J)=∞

L(E)=min(∞, 0+2)=2 L(K)=min(∞, 0+2)=2

L(F)=∞ L(L)=∞

L(G)=∞ L(M)= ∞ ; L(Z)= ∞

3. v=B, vertex with smallest label, L(v)=2
 P={A,B}, T={C,D,E,F,G,H,I,J,K,L,M,Z}
B≠Z so calculate new labels for vertices in T

L(C)=min(∞, 2+4)=6 L(I)=min(∞, 2+2)=4

L(D)=∞ L(J)=∞

L(E)=min(2,2+∞)=2 L(K)=min(2,2+∞)=2

L(F)=∞ L(L)=∞

L(G)=∞ L(M)=∞

L(H)=min(2,2+1)=2 L(Z)= ∞

4. v=E, vertex with smallest label, L(v)=2

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 61

 P={A,B,E}, T={C,D,F,G,H,I,J,K,L,M,Z}
B≠Z so calculate new labels for vertices in T

L(C)=min(6, 2+∞)=6 L(J)= ∞

L(D)=∞ L(K)=min(2,2+2)=2

L(F)=min(∞,2+3)=5

L(G)=∞ L(L)=∞

L(H)=∞ L(M)=∞

L(I)= ∞ L(Z)= ∞

5. v=K, vertex with smallest label, L(v)=2
 P={A,B,E,K}, T={C,D,F,G,H,I,J,L,M,Z}
K≠Z so calculate new labels for vertices in T

L(C)=min(6, 2+∞)=6 L(J)= ∞

L(D)=∞ L(L)=min(∞,2+4)=6

L(F)=min(5,2+2)=4 L(M)=∞

L(G)=∞ L(Z)= ∞

L(H)=min(∞,2+2)=4

L(I)= min(∞,2+3)=5

6. v=F, vertex with smallest label, L(v)=4
 P={A,B,E,K,F}, T={C,D,G,H,I,J,L,M,Z}
K≠Z so calculate new labels for vertices in T

L(C)=min(6, 4+∞)=6 L(I)= min(5,4+∞)=5

L(D)=∞ L(L)=min(6,4+1)=5

L(G)=min(∞,4+4)=8 L(M)=min(∞,4+3)=7

L(G)=∞ L(Z)= ∞

L(H)=min(4,4+∞)=4 L(J)= ∞

7. v=H, vertex with smallest label, L(v)=4
 P={A,B,E,K,F,H}, T={C,D,G,I,J,L,M,Z}

K≠Z so calculate new labels for vertices in T

L(C)=min(6, 4+∞)=6 L(J)= min(∞,4+∞)=∞

L(D)=∞ L(L)=min(5,4+∞)=5

L(G)=min(8,4+∞)=8 L(M)=min(7,4+∞)=7

L(I)=min(5,4+4)=5 L(Z)= ∞

8. v=I, vertex with smallest label, L(v)=5
 P={A,B,E,K,F,H,I}, T={C,D,G,J,L,M,Z}
I≠Z so calculate new labels for vertices in T

L(C)=min(6, 5+2)=6 L(L)= min(5,5+1)=5

L(D)=∞ L(M)=min(7,5+∞)=7

L(G)=min(8,5+∞)=8 L(Z)=∞

L(J)=min(∞,5+5)=10

9. v=L, vertex with smallest label, L(v)=5
 P={A,B,E,K,F,H,I,L}, T={C,D,G,J,M,Z}

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 62

L≠Z so calculate new labels for vertices in T

L(C)=min(6, 5+∞)=6 L(J)= min(10,5+2)=7

L(D)=∞ L(M)=min(7,5+3)=7

L(G)=min(8,5+∞)=8 L(Z)=∞

10. v=C, vertex with smallest label, L(v)=6
 P={A,B,E,K,F,H,I,L,C}, T={D,G,J,M,Z}
C≠Z so calculate new labels for vertices in T

L(D)=min(∞,6+3)=9 L(M)= min(7,6+∞)=7

L(G)=min(8,6+∞)=8 L(Z)=∞

L(J)=min(7,6+4)=7

11. v=J, vertex with smallest label, L(v)=7
 P={A,B,E,K,F,H,I,L,C,J}, T={D,G,M,Z}
J≠Z so calculate new labels for vertices in T

L(D)=min(9,7+2)=9 L(M)= min(7,7+2)=7

L(G)=min(8,7+∞)=8 L(Z)=min(∞,7+1)=8

12. v=M, vertex with smallest label, L(v)=7
 P={A,B,E,K,F,H,I,L,C,J,M}, T={D,G,Z}
M≠Z so calculate new labels for vertices in T

L(D)=min(9,7+∞)=9 L(Z)= min(8,7+3)=8

L(G)=min(8,7+1)=8

13. v=G, vertex with smallest label, L(v)=8
 P={A,B,E,K,F,H,I,L,C,J,M,G}, T={D,Z}

G≠Z so calculate new labels for vertices in T

L(D)=min(9,8+∞)=9 L(Z)= min(8,8+1)=8

14. v=z, so we stop here, Shortest distance is 8
Backtracking all steps we get, shortest path as: A-K-F-L-J-Z

Q.62 Define a B-Tree. (4)

Ans:

 Just as AVL trees are balanced binary search trees, B-trees are balanced M-way
search trees. A B-Tree of order M is either the empty tree or it is an M-way search
tree T with the following properties:
1. Each non-leaf node has a maximum of M children and minimum of M/2 keys.
2. Each node has one fewer key than the number of children with a maximum of

M-1 keys.
3. Keys are arranged in a defined order within the node. All keys in the subtree

to the left of a key are predecessor of the key and that on the right are
successors of the key.

4. All leaves are on the same level.

Q.63 Show the result of inserting the keys.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 63

 F, S, Q, K, C, L, H, T, V, W, M, R, N , P, A, B, X, Y, D, Z, E in the order to
an empty B-tree of degree-3. (12)

Ans:

Q.64 What are stacks? How can stacks be used to check whether an expression is
correctly parenthized or not. For eg(()) is well formed but (() or)()(is not.
 (7)

Ans:
A stack is a data structure that organizes data similar to how one organizes a pile
of coins. The new coin is always placed on the top and the oldest is on the bottom
of the stack. When accessing coins, the last coin on the pile is the first coin
removed from the stack. If we want the third coin, we must remove the first two
coins from the top of the stack first so that the third coin becomes the top of the
stack and we can remove it. There is no way to remove a coin from anywhere
other than the top of the stack.
A stack is useful whenever we need to store and retrieve data in last in, first out
order. For example, The computer processes instructions using a stack in which
the next instruction to execute is at the top of the stack.
To determine whether an expression is well parenthized or not:- two conditions
should be fulfilled while pushing an expression into a stack. Firstly, whenever an
opening bracket is pushed inside a stack, there must be an occurrence a closing
bracket before the last symbol is reached. Whenever a closing bracket is
encountered, the top of the stack is popped until the opening bracket is popped out
and discarded. If no such opening bracket is found and stack is emptied, then this
means that the expression is not well parenthized.
An algorithm to check whether an expression is correctly parenthized is as

follows:
flag=TRUE;

clear the stack;

Read a symbol from input string;

while not end of input string and flag do

 {

 if(symbol= ‘(‘ or symbol= ‘[‘ or symbol = ‘{‘)

 push(symbol,stack);

 else if(symbol= ‘) ‘ or symbol= ‘[‘ or symbol =

‘{‘)

B

D K

M

N P L

F

H E

A C

Q

W

T Y

Z X V R S

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 64

 if stack is empty

 flag=false;

 printf(“More right parenthesis than left

parenthises”);

 else

 c=pop(stack);

 match c and the input symbol;

 If not matched

 { flag=false;

 printf(“Mismatched

parenthesis”);

 }

 Read the next input symbol;

 }

if stack is empty then

 printf(“parentheses are balanced properly”);

else

 printf(“ More left parentheses than right

parentheses”);

Q.65 What is a linear array? Explain how two dimensional arrays are represented in

memory. (8)

Ans:
 An array is a way to reference a series of memory locations using the same name.

Each memory location is represented by an array element. An array element is
similar to one variable except it is identified by an index value instead of a name.
An index value is a number used to identify an array element. The square bracket
tells the computer that the value inside the square bracket is an index.
 grades[0]

 grades[1]
Representation of two-dimensional arrays in memory:-
Let grades be a 2-D array as grades[3][4]. The array will be represented in
memory by a block of 3*4=12 sequential memory locations. It can be stored in
two ways:- row major wise or column major wise. The first set of four array
elements is placed in memory, followed by the second set of four array elements,
and so on.

Q.66 Write an algorithm to merge two sorted arrays into a third array. Do not sort

the third array. (8)

Ans:
 void merge(int *a,int *b,int n,int m)

{

int i=0,c[20],j=0,k=0,count=0;

while(i<=n&&j<=m)

{

if(a[i]<b[j])

{

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 65

c[k]=a[i];

i++;

k++;

}

if(a[i]>b[j])

{

c[k]=b[j];

j++;

k++;

}

if(a[i]==b[j])

{

c[k]=a[i];

k++;

i++;

j++;

count++;

}

 }

if(i<=n&&j==m)

{

while(i<=n)

{

c[k]=a[i];

i++;

k++;

}

}

if(i==n&&j<=m)

{

while(j<=m)

{

c[k]=b[j];

i++;

j++;

}

}

for(i=0;i<m+n-count;i++)

 printf("%d\t",c[i]);

}

Q.67 Write a complete programme in C to create a single linked list. Write

functions to do the following operations
(i) Insert a new node at the end
(ii) Delete the first node (8)

Ans:
//Create a single list

struct node

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 66

{

 int data;

 struct node *link

}

struct node *p,*q;

//Inserting a node at the end(append)

append(struct node **q,int num)

{

 struct node *temp;

 temp=*q;

 if(*q==NULL)

 {

 *q=malloc(sizeof(struct node *));

 temp=*q;

 }

 else

 {

 while(temp � link!=NULL)

 temp=temp�link;

 temp�link = malloc(sizeof(struct node *));

 temp=temp�link;

 }

 Temp�data=num;

 temp �link=NULL;

}

//Delete the first node

delete(struct node *q,int num)

{

 struct node *temp;

 temp=*q;

 *q=temp�link;

 free(temp);

}

Q.68 Define a sparse metrics. Explain the representation of a 4X4 matrix using

linked list. (8)

Ans:
 A matrix in which number of zero entries are much higher than the number of

non zero entries is called sparse matrix. The natural method of representing
matrices in memory as two-dimensional arrays may not be suitable for sparse
matrices. One may save space by storing only nonzero entries. For example
matrix A (3*3 matrix) represented below

 0 2 0
 5 0 0
 0 6 9

can be written in sparse matrix form as:
 3 3 4
 0 1 2

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 67

 1 0 5
 2 2 6

 2 3 9

where first row represent the dimension of matrix and last column tells the
number of non zero values; second row onwards it is giving the position and value
of non zero number.
Representation of a 4*4 matrix using linked list is given below:
#define MAX1 4

#define MAX2 4

struct cheadnode /* structure for col

headnode */

{

 int colno ;

 struct node *down ;

 struct cheadnode *next ;

} ;

struct rheadnode /* structure for row

headnode */

{

 int rowno ;

 struct node * right ;

 struct rheadnode *next ;

} ;

struct node /* structure for node to

store element */

{

 int row ;

 int col ;

 int val ;

 struct node *right ;

struct node *down ;

} ;

struct spmat /* structure for special

headnode */

{

 struct rheadnode *firstrow ;

 struct cheadnode *firstcol ;

 int noofrows ;

 int noofcols ;

} ;

struct sparse

{

 int *sp ;

 int row ;

 struct spmat *smat ;

 struct cheadnode *chead[MAX2] ;

 struct rheadnode *rhead[MAX1] ;

 struct node *nd ;

} ;

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 68

void initsparse (struct sparse *p) /*

initializes structure elements */

{

 int i ;

for (i = 0 ; i < MAX1 ; i++) /* create

row headnodes */

 p -> rhead[i] = (struct rheadnode *) malloc (

 sizeof (struct rheadnode)) ;

 for (i = 0 ; i < MAX1 - 1 ; i++) /* initialize and

link row headnodes together */

 {

 p -> rhead[i] -> next = p -> rhead[i + 1] ;

 p -> rhead[i] -> right = NULL ;

 p -> rhead[i] -> rowno = i ;

 }

 p -> rhead[i] -> right = NULL ;

 p -> rhead[i] -> next = NULL ;

 for (i = 0 ; i < MAX1 ; i++) /* create

col headnodes */

 p -> chead[i] = (struct cheadnode *) malloc (

sizeof (struct cheadnode)) ;

 for (i = 0 ; i < MAX2 - 1 ; i++) /*

initialize and link col headnodes together */

 {

 p -> chead[i] -> next = p -> chead[i + 1] ;

p -> chead[i] -> down = NULL ;

 p -> chead[i] -> colno = i ;

 }

 p -> chead[i] -> down = NULL ;

 p -> chead[i] -> next = NULL ;

 /* create and initialize special headnode */

 p -> smat = (struct spmat *) malloc (sizeof (

struct spmat)) ;

 p -> smat -> firstcol = p -> chead[0] ;

 p -> smat -> firstrow = p -> rhead[0] ;

 p -> smat -> noofcols = MAX2 ;

 p -> smat -> noofrows = MAX1 ;

}

void create_array (struct sparse *p) /* creates,

dynamically the matrix of size MAX1 x MAX2 */

{

 int n, i ;

 p -> sp = (int *) malloc (MAX1 * MAX2 * sizeof (

int)) ;

 for (i = 0 ; i < MAX1 * MAX2 ; i++) /*

get the element and store it */

 {

 printf ("Enter element no. %d:", i) ;

 scanf ("%d", &n) ;

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 69

 * (p -> sp + i) = n ;

 }

}

Q.69 Given the following inorder and preorder traversal reconstruct a binary tree
 Inorder sequence D, G, B, H, E, A, F, I, C
 Preorder sequence A, B, D, G, E, H, C, F, I (8)

Ans:
 The given In-order sequence:- D, G, B, H, E, A, F, I, C

Pre-order sequence:- A, B, D, G, E, H, C, F, I
The binary tree T is drawn from its root downward by choosing the first node in
its pre-order as root of T then study left and right child recursively. The tree T is
shown below:

Q.70 Devise a representation for a list where insertions and deletions can be made at

either end. Such a structure is called Deque (Double ended queue). Write
functions for inserting and deleting at either end. (8)

Ans:
 struct Deque

{

 int info;

 struct Deque *left, *right;

}*head, *tail;

add(struct Deque *p, int x)

{

struct Deque *temp;

temp = malloc (sizeof(struct Deque), 1);

temp -> info = x;

if(p == head)

{

 temp->right = head;

 temp->left = NULL;

 head->left = temp;

A

B
C

D

G

E

H

F

I

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 70

 head = temp;

}

else if(p == tail)

{

 temp->left = tail;

 temp->right = NULL;

 tail->right = temp;

 tail = temp;

}

}

delete(struct Deque *p, int x)

{

 struct Deque *temp;

 if(p == head)

 {

 temp = head;

 head = head->right;

 head->left = NULL;

 temp->right = NULL;

 free(temp);

 }

 else if(p == tail)

{

 temp = tail;

 tail = tail->left;

 tail->right = NULL;

 temp->left = NULL;

 free(temp);

 }

}

Q.71 Define Hashing. How do collisions happen during hashing? Explain the

different techniques resolving of collision. (8)

Ans:
 Hashing provides the direct access of record from the file no matter where the

record is in the file. This is possible with the help of a hashing function H which
map the key with the corresponding key address or location. It provides the key-
to-address transformation.
Usually the key space is much larger than the address space, therefore, many keys
are mapped to the same address. Suppose that two keys K1 and K2 map to the
same address. When the record with key K1 is entered, it is inserted at the hashed
address, but when another record with key K2 is entered, it is a dilemma where to
insert as a record with key K1 is already there. This situation is called a hash
collision. Two broad classes of collision resolution techniques are: open
addressing and chaining.
Open addressing: The simplest way to resolve a collision is to start with the
hash address and do a sequential search through the table for an empty location.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 71

The idea is to place the record in the next available position in the array. This
method is called linear probing. An empty record is indicated by a special value
called null. The major drawback of the linear probe method is clustering.
Chaining: In this technique, instead of hashing function value as location we use
it as an index into an array of pointers. Each pointer access a chain that holds the
element having same location.

Q.72 Make a BST for the following sequence of numbers.
 45,32,90,34,68,72,15,24,30,66,11,50,10 Traverse the BST created in Pre-

order, Inorder and Postorder. (8)

Ans:

 The property that makes a binary tree into a binary search tree is that for every
node, X, in the tree, the values of all the keys in the left subtree are smaller than
the key value in X, and the values of all the keys in the right subtree are larger
than the key value in X.
The Binary Search Tree for given data 45, 32, 90, 34, 68, 72, 15, 24, 30, 66, 11,
50, 10

The traversals for the above tree is as follows:-
Pre-order traversal is-
45 , 32, 15, 11, 10, 24, 30, 34, 90, 68, 66, 50, 72
Inorder traversal is:-
10, 11, 15, 24, 30, 32, 34, 45, 50, 66, 68, 72, 90
Postorder traversal:-
10, 11, 30, 24, 15, 34, 32, 50, 66, 72, 68, 90, 45

Q.73 What is a Binary Tree? What is the maximum number of nodes possible in a

Binary Tree of depth d. Explain the following terms with respect to Binary
trees

 (i) Strictly Binary Tree (ii) Complete Binary Tree (iii) Almost
Complete Binary Tree (8)

45

32

15 34

90

68

66

50

24

30

11

10

72

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 72

 Ans:

 A binary tree is a tree in which no node can have more than two children.
Figure below shows that a binary tree consists of a root and two subtrees, Tl and

Tr, both of which could possibly be empty.

The maximum numbers of nodes a binary tree of depth d can have is 2 d+1-1.
(i) Strictly Binary Tree:- If every non leaf node in binary tree has non empty
left and right sub-trees , then the tree is called a strictly binary tree.
(ii) Complete Binary Tree:- A complete binary tree of depth d is that strictly
binary tree all of whose leaves are at level D.
(iii) Almost Complete Binary Tree:-A binary tree of depth d is an almost
complete binary tree if: 1.Any node nd at level less than d-1 has two children. 2.
for any node nd in the tree with
(iv) a right descendant at level d, nd must have a left child and every descendant
of nd is either a leaf at level d or has two children.

Q.74 What is a Spanning tree of a graph? What is minimum spanning tree? Execute
Prim’s Kruskal’s algorithm to find the minimum spanning tree of the
following graph. (10)

Ans:

 A Spanning Tree is any tree consisting of vertices of graph tree and some edges
of graph is called a spanning tree.

g

f

e

d

c

b

10

14

11

5

6

4

15 9

12

a

3

8

2

2

7

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 73

If graph has n vertices then spanning tree has exactly n-1 edges.
A minimum spanning tree of an undirected graph G is a tree formed from graph
edges that connects all the vertices of G at lowest total cost. A minimum spanning
tree exists if and only if G is connected.
Kruskal’s algorithm to find minimum spanning tree of given graph:

S.No. Edge Cost Action Spanning Tree T
 T={φ}

1. (d,f) 2 Add to T

2. (f,g) 2 Add to T

3. (d,g) 3 Discard as it forms a cycle

4. (g,b) 4 Add to T

5. (b,d) 5 Add to T
6. (d,e) 6 Add to T

7. (e,f) 7 Discard as it forms a cycle
8. (e,g) 8 Discard as it forms a cycle
9. (a,g) 9 Add to T

d

f

d

f

g

d

f

g b

d

f

g b

e

d

f

g b

e
a

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 74

10. (b,c) 10 Add to T

 T is required spanning tree.

Q.75 What are B-trees? Draw a B-tree of order 3 for the following sequence of
keys. 3,5,11,10,9,8,2,6,12 (6)

Ans:

A B-tree is a balanced multiway search tree.
A B-Tree of order M is either the empty tree or it is an M-way search tree T with
the following properties:

1. The root of T has at least two subtrees and at most M subtrees.
2. All internal nodes of T (other than its root) have between [M / 2] and M

subtrees.
3. All external nodes of T are at the same level.

A B-tree of order one is clearly impossible.

Q.76 Show the result of running BFS and DFS on a directed graph given below
using vertex 1 as source. Show the status of the data structure used at each
stage. (10)

8

5 10

2 3 6 9 11 12

d

f

g b

e

a
c

5

6 4

3

2

1

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 75

Ans: Depth First Transversal

1 – Mark 1
1 – 3 Mark 3
1 – 3 – 2 Mark 2

 1 is marked, so visit 6
1 – 3 – 2 – 6

 Move to adj list of 6
 1 is already marked

1 – 3 – 2 – 6 – 5
 Move to adj list of 5
 3 is already marked
 So move to adj list of 6 again

 Depth First Transversal is:
 1 – 3 – 2 – 6 – 5 – 4

Breadth First Transversal

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 76

Breadth First Transversal is:
 1 – 3 – 2 – 4 - 6 – 5

Q.77 Construct a complete binary tree with depth 3 for this tree which is maintained
in memory using linked representation. Make the adjacency list and adjacency matrix for
this tree. (6)

Ans:

 Pointer Info. Left Right

1 A 2 3

2 B 4 5

3 C 6 7

4 D 8 9

5 E 10 11

6 F 12 13

7 G 14 15

8 H 0 0

9 I 0 0

10 J 0 0

11 K 0 0

12 L 0 0

13 M 0 0

14 N 0 0

15 O 0 0

Q.78 Define data type and abstract data type. Comment upon the significance of

both. (8)

Ans:

 We determine the amount of memory to reserve by determining the appropriate
abstract data type group to use and then deciding which abstract data type within
the group is right for the data.
There are four data type groups:
• Integer Stores whole numbers and signed numbers.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 77

• Floating-point Stores real numbers (fractional values). Perfect for storing
bank deposits where pennies (fractions of a dollar) can quickly add up to a
few dollars.

• Character Stores a character. Ideal for storing names of things.
• Boolean Stores a true or false value. The correct choice for storing a yes or no

or true or false response to a question.
Abstract Data Types:-

A useful tool for specifying the logical properties of a data type is the abstract
data type or ADT. The term “abstract data type” refers to the basic mathematical
concept that defines the data type. In defining ADT as a mathematical concept,
we are not concerned with space or time efficiency.
An ADT consists of two parts:- a value definition and an operator definition. The
value definition defines the collection of values for the ADT and consists of two
parts: a definition clause and a condition clause. For example, the value consist
definition for the ADT RATIONAL states that a RATIONAL value consists of
two integers, the second of which does not equal 0. We use array notation to
indicate the parts of an abstract type.

Q.79 Write a procedure to reverse a singly linked list. (8)

Ans:
A procedure to reverse a singly linked list:

 reverse(struct node **st)

{

struct node *p, *q, *r;

p = *st;

q = NULL;

while(p != NULL)

{

 r =q;

 q = p;

 p = p � link;

 q � link = r;

}

*st = q;

}

Q.80 Execute your algorithm to convert an infix expression to a post fix expression

with the following infix expression as input

 () () ()[] () I/HGF/EDC/BAQ ++↑++= (8)

Ans:
Given infix expression is:-

Q = [(A + B) / (C + D) ^ (E + F)] + (G + H) / I
Symb Stack Postfix Notation

 [[
 ([(
 A [(A

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 78

 + [(+
 B [(+ AB
) [AB+
 / [/
 ([/ (
 C [/ (AB+C
 + [/ (+
 D [/ (+ AB+CD
) [/ AB+CD+
 ^ [/ ^
 ([/ ^ (
 E [/ ^ (AB+CD+
 / [/ ^ (/ AB+CD+
 F [/ ^ AB+CD+/
] EMPTY AB+CD+EF/^/
 + +
 (+ (
 G + (AB+CD+EF/^/G
 + + (+
 H + (+ AB+CD+EF/^/GH
) + AB+CD+EF/^/GH+
 / + / AB+CD+EF/^/GH+
 I + / AB+CD+EF/^/GH+I

POSTFIX:- AB+CD+EF/^/GH+I/+

Q81 Enumerate various operations possible on ordered lists and arrays. Write
procedures to insert and delete an element in to array. (8)

Ans:
An ordered list is a container which holds a sequence of objects. Each object has a
unique position in the sequence. In addition to the basic repertoire of operations
supported by all searchable containers, ordered lists provide the following
operations:
FindPosition
used to find the position of an object in the ordered list;
operator []
used to access the object at a given position in the ordered list;
Withdraw(Position&)
used to remove the object at a given position from the ordered list.
InsertAfter
used to insert an object into the ordered list after the object at a given position;
and
InsertBefore
used to insert an object into the ordered list before the object at a given position.
Procedures to insert and delete an element in to an array:-
void insert (int *arr, int pos, int num)

/* inserts an element num at given position pos */

{

 /* shift elements to right */

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 79

 int i ;

 for (i = MAX - 1 ; i >= pos ; i--)

 arr[i] = arr[i - 1] ;

 arr[i] = num ;

}

void del (int *arr, int pos)

/* deletes an element from the given position pos */

{

 /* skip to the desired position */

 int i ;

 for (i = pos ; i < MAX ; i++)

 arr[i - 1] = arr[i] ;

 arr[i - 1] = 0 ;

}

Q.82 By taking an example show how multidimensional array can be represented in

one dimensional array. (8)

Ans:

Multidimensional array: Multidimensional arrays can be described as "arrays
of arrays". For example, a bidimensional array can be imagined as a
bidimensional table made of elements, all of them of a same uniform data type.

 int arr[3][5]; represents a bidimensional array of 3 per 5 elements of type int.
Similarly a three dimensional array like

 int arr[3][4][2]; represent an outer array of three elements , each of which is a
two dimensional array of four rows, each of which is a one dimensional array of
five elements.
Multidimensional arrays are not limited to two or three indices (i.e., two
dimensional or three dimensional). They can contain as many indices as needed.
However the amount of memory needed for an array rapidly increases with each
dimension. For example:
char arr [100][365][24][60][60];declaration would consume more than 3
gigabytes of memory.
Memory does not contain rows and columns, so whether it is a one dimensional
array or two dimensional arrays, the array elements are stored linearly in one
continuous chain. For example, the multidimensional array

 int arr[3][4][2]= {
 { {1,2},{3,4},{5,6},{7,8} },

 { {9,1},{1,2},{3,7},{4,7} },
 { {6,1},{18,19},{20,21},{22,23} },

 }; is stored in memory just like an one-dimensional array shown below:

1 2 3 4 5 6 7 8 9 1 1 2 3 7 4 7 6 1 18 19 20 21 22 23

101 117 133

Multidimensional arrays are just an abstraction for programmers, since we can
obtain the same results with a simple array just by putting a factor between its
indices.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 80

Q.83 Show the various passes of bubble sort on an unsorted list 11, 15, 2, 13, 6 (8)

Ans:
The given data is:-

Pass 1:- 11 15 2 13 6

 11 15 2 13 6

 11 2 15 13 6

 11 2 13 15 6

 11 2 13 6 [15]

Pass 2:- 11 2 13 6 15

 2 11 13 6 15

 2 11 13 6 15

 2 11 6 [13 15]

Pass 3:- 2 11 6 13 15

 2 11 6 13 15

 2 6 [11 13 15]

Pass 4:- 2 6 11 13 15

 2 [6 11 13 15]

Therefore, the sorted array is:-

 2 6 11 13 15

Q.84 Compare and contrast various sorting techniques with respect to memory
space and computing time. (8)

Ans:

Insertion sort:- Because of the nested loops, each of which can take n iterations,
insertion sort is O(n2). Furthermore, this bound is tight, because input in reverse
order can actually achieve this bound. So complexity= (n(n-1))/2 = O(n2).
Shellsort: - The running time of Shellsort depends on the choice of increment
sequence. The worst-case running time of Shellsort, using Shell's increments, is

(n2).
Heapsort:- The basic strategy is to build a binary heap of n elements. This stage
takes O(n) time. We then perform n delete_min operations. The elements leave
the heap smallest first, in sorted order. By recording these elements in a second
array and then copying the array back, we sort n elements. Since each delete_min
takes O(log n) time, the total running time is O(n log n).
Mergesort:- Mergesort is a classic example of the techniques used to analyze
recursive routines. We will assume that n is a power of 2, so that we always split
into even halves. For n = 1, the time to mergesort is constant, which we will

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 81

denote by 1. Otherwise, the time to mergesort n numbers is equal to the time to do
two recursive mergesorts of size n/2, plus the time to merge, which is linear. The
equations below say this exactly:

 T(1) = 1
 T(n) = 2T(n/2) + n

Quicksort:- Like mergesort, quicksort is recursive, and hence, its analysis
requires solving a recurrence formula. We will do the analysis for a quicksort,
assuming a random pivot (no median-of-three partitioning) and no cutoff for
small files. We will take T(0) = T(1) = 1, as in mergesort. The running time of
quicksort is equal to the running time of the two recursive calls plus the linear
time spent in the partition (the pivot selection takes only constant time). This
gives the basic quicksort relation

T(n) = T(i) + T(n - i - 1) + cn

Q.85 What do you mean by hash clash? Explain in detail any one method to resolve
hash collisions. (8)

Ans:

Hashing is not perfect. Occasionally, a collision occurs when two different keys
hash into the same hash value and are assigned to the same array element.
Programmers have come up with various techniques for dealing with this conflict.
A common way to deal with a collision is to create a linked list of entries that
have the same hash value. For example, let the key of each entry hashes to the
same hash value and this result in both being assigned to the same array element
of the hashtable.
Because two entries cannot be assigned the same array element, the programmer
creates a linked list. The first user-defined structure is assigned to the pointer in
the array element. The second isn’t assigned to any array element and is instead
linked to the first user-defined structure, thereby forming a linked list.
For example: in a table size of 7
42, 56 both are mapped to index 0 as 42%7=0 and 56%7=0.
25, 42, 96, 101, 102, 162, 197 can be mapped as follows:

0

1

2

3

4

42

162

101

25

C

102

192

NULL

5

6

96

NULL

NULL

NULL

NULL

NULL

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 82

Q.86 Describe the concept of binary search technique? Is it efficient than sequential
search? (8)

Ans:

 Binary search technique:-
This technique is applied to an ordered list where elements are arranged either in
ascending order or descending order. The array is divided into two parts and the
item being searched for is compared with item at the middle of the array. If they
are equal the search is successful. Otherwise the search is performed in either the
first half or second half of the array. If the middle element is greater than the item
being searched for the search process is repeated in the first half of the array
otherwise the process is repeated in the second half of the array. Each time a
comparison is made, the number of element yet to be searched will be cut in half.
Because of this division of array into two equal parts, the method is called a
binary search.
In binary search, each iteration of the loop halves the size of the list to be
searched. Thus the maximum number of key comparisons is approximately
2*log2n. This is quite an improvement over the sequential search, especially as the
list gets larger. The binary search is, however, not guaranteed to be faster for
searching for small lists. Even though the binary search requires less number of
comparisons, each comparison requires more computation. When n is small, the
constant of proportionality may dominate. Therefore, in case of less number of
elements in the list, a sequential search is adequate.

Q.87 Prove the hypothesis that “A tree having ‘m’ nodes has exactly (m–1) edges or

branches”. (8)

Ans:

A tree having m nodes has exactly (m-1) edges or branches

Proof: A root in a tree has indegree zero and all other nodes have indegree one.

There must be (m-1) incoming arcs to the (m-1) non-root nodes. If there is any

other arc, this arc must be terminating at any of the nodes. If the node is root, then

its indegree will become one and that is in contradiction with the fact that root

always indegree zero. If the end point of this extra edge

is any non-root node then its indegree will be two, which is again a contradiction.

Hence there cannot be more arcs. Therefore, a tree with m vertices will have

exactly (m-1) edges.

Q.88 What do you understand by tree traversal? Write a procedure for traversing a
binary tree in preorder and execute it on the following tree. (8)

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 83

Ans:

The algorithm walks through the tree data structure and performs some
computation at each node in the tree. This process of walking through the tree is
called a tree traversal.
There are essentially two different methods in which to visit systematically all the
nodes of a tree--depth-first traversal and breadth-first traversal. Certain depth-
first traversal methods occur frequently enough that they are given names of their
own: preorder traversal, inorder traversal and postorder traversal.

The algorithm for traversing a tree in preorder is as follows:-
i. Process the root R.

ii. Traverse the left sub tree of R in preorder.

iii. Traverse the right sub tree of R in preorder.

The preorder for the given tree is:-
A L1 R1
A B L1l L1R R1
A B D L1R R1
A B D E R1
A B D E C R1L R1R
A B D E C F R1R
A B D E C F G

Q.89 Write a procedure to insert a node into a linked list at a specific position and
draw the same by taking any example? (8)

Ans:
 * Insert (after legal position p).*/

 /* Header implementation assumed. */

 void insert(element_type x, LIST L, position p)

 {

 position tmp_cell;

 tmp_cell = (position) malloc(sizeof (struct node));

 if(tmp_cell == NULL)

 fatal_error("Out of space!!!");

 else

 {

 tmp_cell->element = x;

 tmp_cell->next = p->next;

 p->next = tmp_cell;

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 84

 }

 }

Q.90 Explain insertion into a B-tree. (8)

 Ans:

 Insertion into a B-tree:

1. First search is done for the place where the new record must be put. As the
keys are inserted, they are sorted into the proper order.

2. If the node can accommodate the new record, insert the new record at the
appropriate pointer so that number of pointers remains one more than the
number of records.

3. If the node overflows because there is an upper bound on the size of a node,
splitting is required. The node is split into three parts; the middle record is
passed upward and inserted into parent, leaving two children behind. If n is
odd (n-1 keys in full node and the new target key), median key int(n/2)+1 is
placed in parent node, the lower n/2 keys are put in the left leaf and the higher
n/2 keys are put in the right leaf. If n is even, we may have left biased or right
biased means one key may be more in left child or right child respectively.

4. Splitting may propagate up the tree because the parent, into which splitted
record is added, may overflow then it may be split. If the root is required to
be split, a new record is created with just two children.

Q.91 Define adjacency matrix and make the same for the following undirected

graph. (8)

a1 a1 a1 a1 a1

a1

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 85

Ans:
Adjacency Matrix representation: This representation consists of |V|*|V| matrix

A=(aij) such that

 1 if(i,j)ε E
 aij=

 0 otherwise

The adjacency matrix of given graph is given below:

Q.92 Show the linked representation of the above graph. (8)

Ans: The linked representation of given graph is:

Q.93 List various problem solving techniques. (5)

Ans.

Problem Solving Technique

 There are two approaches to solve a problem. They are:-

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 86

1. Top down-A top down design approach starts by identifying the major
components of the system, decomposing them into their lower-level
components & iterating until the desired level of detail is achieved it often result
into some form of stepwise refinement stating from an abstract design, in each
step the design is refined to more concrete level , until we reach a level where
no more refinement is needed & the design can be implemented directly. It is
suitable only if the specifications of the system are clearly known (waterfall
model). Top down approaches require some idea about the feasibility of
components specified during design.
2. Bottom- up- A bottom- up design approach starts with designing the most
basic or primitive components & proceeds to the higher- level components that
use these lower- level components. Bottom-up methods work with layer of
abstraction starting from the very bottom, operations that provide a layer
abstractions are implemented .The operations of this layer are then used to
implement more powerful operations & a still higher layer of abstraction, until
the stage is reached where the operations supported by the layer are those
desired by the system. If a system is to is to be built from an existing system
approach bottom-up is more suitable.
Here, pure top-down or pure bottom-up approaches are often not practical .A
common approach to combine he two approaches is to provide a layer of
abstraction for the application domain of interest through libraries of functions,
which contain the functions of interest to the application domain.

Q94. Explain the concept of primitive data structures. (4)

Ans.

Primitive Data Structure

These are the basic structure and are directly operated upon by the machine
instructions. These in general have different representations on different
computer. Integer floating point number, character constraints, string constants,
pointer etc fall in this category.

Primitive Data Structure

 Int Float Char Pointer

Q95. Determine the frequency counts for all statements in the following program

segment.
 for (i=1; i ≤ n; i ++)
 for (j = 1; j ≤ i; j++)
 for (k =1; k ≤ j; k++)
 y ++; (3)

 Ans.
 S1: for (i=1; i<= n; i++)
 S2: for (j=1; j,= i; j++)

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 87

S3 : for (k=1; k<= j; k++)

S4 : y++;

Frequency counts of

 S1=n

 S2 = 1+ (1+2)+ (1+2+3) +……. (1+2+….n)

 S3 = 1+ [1+ (1+2)] + …..[1+ (1+2) +….

 (1+2+3+…n)]

 S4= same as S3.

Q96 . Write an algorithm to count number of nodes in the circular linked list. (3)

 Ans.

 Counting No of Nodes in Circular List
Let list be a circular header list in memory. This

algorithm traverse and counts number of nodes in a

LIST.

0. set COUNT: = 0

1. Set PTR: = LINK [START]. {Initializes the

pointer PTR}

2. Repeat steps 3, 4, 5 while PTR = START;

3. COUNT = COUNT + 1

4. Set PTR = LINK [PTR]. [PTR now points to next

node]

[End of step 2 loop]

5. Exit

Q97. Write an algorithm to insert a node in between any two nodes in a linked list (4)

 Ans.

 Insertion of a node after the given element of the list
Node * InsertAfterElement (node * start, int item,

int after)

{

 node * ptr, * loc;

 ptr =(node *) malloc (sizeof (node));

 ptr->info = item;

loc=start;

while (loc != NULL && loc->info != after)

loc= loc->next;

if (start==NULL) { ptr->next= NULL;

start = ptr;}

else if (loc l = NULL){

ptr->next = loc->next;

loc->next= ptr;}

return start;

}

Q98. Write down any four application of a stack. (4)

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 88

 Ans.

(i) Conversion of infix to postfix form

(ii) Reversing of a line.
(iii) Removal of recursion
(iv) Evaluating post fix expression

Q99. The system allocates memory for any multidimensional array from a large
single dimensional array. Describe two mapping schemes that helps us to store
a two dimensional metrics in a one-dimensional array. (8)

Ans.

A two dimensional array is declared similar to the way we declare a one-
dimensional array except that we specify the number of elements in both
dimensions. For example,

 int grades[3][4];
The first bracket ([3]) tells the compiler that we are declaring 3 pointers, each
pointing to an array. We are not talking about a pointer variable or pointer array.
Instead, we are saying that each element of the first dimension of a two
dimensional array reference a corresponding second dimension. In this example,
all the arrays pointed to by the first index are of the same size. The second index
can be of variable size. For example, the previous statement declares a two-
dimensional array where there are 3 elements in the first dimension and 4
elements in the second dimension.
Two-dimensional array is represented in memory in following two ways:
1. Row major representation: To achieve this linear representation, the first row
of the array is stored in the first memory locations reserved for the array, then
the second row and so on.
2. Column major representation: Here all the elements of the column are stored
next to one another. In row major representation, the address is calculated in a
two dimensional array as per the following formula
The address of a[i][j]=base(a)+(i*m+ j)*size,where base(a) is the address of
a[0][0], m is second dimension of array a and size represent size of the data
type.

Q100. Write down the algorithm of quick sort.

Ans.

An algorithm for quick sort:
void quicksort (int a[], int lower, int upper)

{

 int i ;

 if (upper > lower) {

 i = split (a, lower, upper) ;

 quicksort (a, lower, i - 1) ;

 quicksort (a, i + 1, upper) ; }

}

int split (int a[], int lower, int upper){

 int i, p, q, t ;

 p = lower + 1 ;

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 89

 q = upper ;

 i = a[lower] ;

 while (q >= p)

 {

 while (a[p] < i)

 p++ ;

 while (a[q] > i)

 q-- ;

 if (q > p)

 {

 t = a[p] ;

 a[p] = a[q] ;

 a[q] = t ;

 }

 }

 t = a[lower] ;

 a[lower] = a[q] ;

 a[q] = t ;

 return q ; }

Q101. Convert the following Infix expression to Postfix form using a stack:
 x + y * z + (p * q + r) * s, Follow usual precedence rule and assume that the

expression is legal. (7)

Ans.

The given infix expression is :-

 x + y * z + (p * q + r) * s

Symb Stack Postfix Expression
x empty x
+ + x
y + xy
* +* xy
z +* xyz
+ + xyz*+
(+(xyz*+
p +(xyz*+p
* +(* xyz*+p
q +(* xyz*+p
+ +(+ xyz*+pq*
r +(+ xyz*+pq*r
) + xyz*+pq*r+
* +* xyz*+pq*r+
s +* xyz*+pq*r+s
 = xyz*+pq*r+s*+

The postfix expression is :- xyz*+pq*r+s*+

Q102. Draw the 11 item hash table resulting from hashing the keys: 12, 44, 13, 88,
23, 94, 11, 39, 20, 16 and 5 using the hash function h(i) = (2i+5) mod 11. (8)

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 90

Ans.

table size is 11
h(12) = (24+5) mod 11 = 29 mod 11 = 7
h(44) = (88+5) mod 11 = 93 mod 11 = 5
h(13) = (26+5) mod 11 = 31 mod 11 = 9
h(88) = (176+5)mod 11= 181mod 11 = 5
h(23) = (46+5) mod 11 = 51 mod 11 = 7
h(94) = (188+5)mod 11= 193mod 11 = 6
h(11) = (22+5) mod 11 = 27 mod 11 = 5
h(39) = (78+5) mod 11 = 83 mod 11 = 6
h(20) = (40+5) mod 11 = 45 mod 11 = 1
h(16) = (24+5) mod 11 = 29 mod 11 = 4

 h(5) = (10+5) mod 11 = 15 mod 11 = 4

Q103. Give the algorithm to construct a binary tree where the yields of preorder and
post order traversal are given. (6)

Ans.

Tree cannot be constructed using Preorder and Post order traversal of a binary
tree. For this Inorder traversal has to be given.

 Therefore to construct a tree using Inorder and preorder traversal (as an
example, traversals of Q 104 are used), the algorithm is as follows:
The tree T is drawn from the root downward as follows:
1) The root of T is obtained by choosing the first node in its preorder. Thus G
is the root of the node.
2) The left child of the node G is obtained as follows. First use the inorder of T
to find the node in the left subtree LTA of G. Thus LTA consists of the nodes
B,Q,A,C,K,F. Then the left child of G is obtained by choosing the first node in
the preorder of LTA (which appears in the Preorder of T) . Thus B is the left son
of G.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 91

3) Similarly the right subtree RTA of G consists of the nodes P,D,E,R,H and P
is the root of RTA, that is P is the right child of G.

 Repeating the above process with each new node, we finally obtain the required
 tree.

 Q104. Construct the binary tree for the following sequence of nodes in preorder and

inorder respectively.

 Preorder : G, B, Q, A, C, K, F, P, D, E, R, H
 Inorder: Q, B, K, C, F, A, G, P, E, D, H, R (4)

Ans.

 LTA RTA
 Preorder:

Inorder:

 LTA RTA

Root of the tree is G

 LTA RTA

Consider L TA

 Pre:

 In :

B Q A C K F P D E R H

Q B K C F A G P E D H R

QBKCFA PEDHR

G

B Q A C K F

Q B K C F A

G

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 92

Root B

Let us consider RTB

Pre :

In:

Root is A

G

B

Q KCFA

P E D H R

A C K F

K C F A

G

B

Q A
P E D H R

C K F

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 93

Let us consider

Pre:

In :

Now let us consider RTA

Pre:

In:

Let us consider RTE

Pre :

In:

K C F

A

G

B

Q A

C

K F

P D E R H

P E D H R

G

B P

EDHR

D E R H

E D H R

G

P

D

E

HR

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 94

let us now consider HR

Pre:

In:

Q105. Convert the following infix expression into a postfix expression (Show steps)

() ()k/HGFE/DBA +−+∗ (4)

Ans.

Infix to Post fix

Symbol Postfix String Opstk

A A

* A *

(A *(

B AB *(

+ AB *(+

D ABD *(+

) ABD+ *(

/ ABD+* /

E ABD+*E /

- ABD+*E/ -

F ABD+*E/F -

* ABD+*E/F -

(ABD+*E/F -(

G ABD+*E/FG -(

+ ABD+*E/FG -(+

H ABD+*E/FGH -(+

/ ABD+*E/FGH -(+/

K ABD+*E/FGHK -(+/

) ABD+*E/FGHK/+-

R H

H R

G

B

Q A

C

K F

P

D

E
R

H

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 95

Q106. Write an algorithm to delete a particular node from binary search tree. Trace
your algorithm to delete a node (10) from the given tree.

(7)

 Ans.
 Algorithm To Delete Node From Binary Search Tree

To delete a node following possibilities may arise
� Node id a terminal node
� Node have only one child
� Node having 2 children.
DEL(INFO, LEFT, RIGT, ROOT, AVAIL, ITEM)

A binary search tree T is in memory, and an ITEM of information is given. This
algorithm deletes ITEM from the tree.
1. [Find the locations of ITEM and its parent]

Call FIND(INFO, RIGHT, ROOT, ITEM, LOC, PAR).

2. [ITEM in tree?]

if LOC=NULL, then write : ITEM not in tree, and Exit.

3. [Delete node containing ITEM.]

if RIGHT[LOC] != NULL and LEFT[LOC] !=NULL then:

 Call CASEB(INFO,LEFT,RIGHT,ROOT,LOC,PAR).

Else:

 Call CASEA (INFO,LEFT,RIGHT,ROOT,LOC,PAR).

[End of if structure.]

4. [Return deleted node to AVAIL list.]

Set LEFT[LOC]:=AVAIL and AVAIL:=LOC.

5. Exit.

CASEB(INFO,LEFT,RIGHT,ROOT,LOC,PAR)

This procedure will delete the node N at LOC, where N has two children. The
pointer PAR gives the location of the parent of N, or else PAR=NULL indicates
that N is the root node. The pointer SUC gives the location of the inorder
successor of N, and PARSUC gives the location of the parent of the inorder
successor.
1. [Find SUC and PARSUC.]

(a) Set PTR: = RIGHT[LOC] and SAVE:=LOC.

(b) Repeat while LEFT[PTR] ≠ NULL:

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 96

Set SAVE:=PTR and PTR:=LEFT[PTR].

 [End of loop.]

(c) Set SUC : = PTR and PARSUC:=SAVE.

2. [Delete inorder successor]

Call CASEA (INFO, LEFT, RIGHT, ROOT, SUC, PARSUC).

3. [Replace node N by its inorder successor.]

(a) If PAR≠NULL, then:
If LOC = LEFT[PAR], then:

 Set LEFT[PAR]:=SUC.

Else:

 Set RIGHT[PAR]: = SUC.

[End of If structure.]

 Else:

 Set ROOT: = SUC.

 [End of If structure.]

(b) Set LEFT[SUC]:= LEFT [LOC] and

RIGHT[SUC]:=RIGHT[LOC]

4. Return.

CASEA(INFO, LEFT, RIGHT, ROOT, LOC, PAR)

This procedure deletes the node N at location LOC, where N does not have two
children. The pointer PAR gives the location of the parent of N, or else
PAR=NULL indicates that N is the root node. The pointer CHILD gives the
location of the only child of N, or else CHILD = NULL indicates N has no
children.
1. [Initializes CHILD.]

If LEFT[LOC] = NULL and RIGHT[LOC] = NULL, then:

 Set CHILD:=NULL.

Else if LEFT[LOC]≠NULL, then:
 Set CHILD: = LEFT[LOC].

Else

 Set CHILD:=RIGHT[LOC]

[End of If structue.]

2. If PAR ≠ NULL, then:
If LOC = LEFT [PAR], then:

 Set LEFT[PAR]:=CHILD.

 Else:

 Set RIGHT[PAR]:CHILD = CHILD

 [End of If structure.]

 Else:

 Set ROOT : = CHILD.

 [End of If structure.]

3. Return.

Inorder traversal of the tree is

4 6 10 11 12 14 15 20

To delete 10

PAR = Parent of 10 ie 15

SUC = inorder succ of 10 ie. 11

PARSUC = Parent of inorder succ ie 12

PTR = RIGHT [LOC]

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 97

 Address of 12 SAVE: = address of 10

SAVE: = address of 12

PTR = address of 11

SUC = ADDRESS OF 11

PAR SUCC:= ADDRESS OF 12

CHILD = NULL

LEFT [PARSUC] = CHILD= NULL

LEFT [PAR]= ADDRESS OF 11

LEFT [SUC] = LEFT [LOC] = ADDRESS OF 6

RIGHT [SUC] = RIGHT[LOC] = ADDRESS OF 12

Q107. Draw a picture of the directed graph specified below:
 G = (V, E)
 V(G) = {1, 2, 3, 4, 5, 6}
 E(G) = {(1,2), (2, 3), (3, 4), (5,1), (5, 6), (2, 6), (1, 6), (4, 6), (2, 4)}
 Obtain the following for the above graph:

(i) Adjacency matrix.
(ii) React ability matrix. (7)

Ans.

(i) Adjacency matrix

1 2 3 4 5 6

1 0 1 0 0 0 1
2 0 0 1 1 0 1
3 0 0 0 1 0 0
4 0 0 0 0 0 1
5 1 0 0 0 0 1
6 0 0 0 0 0 0

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 98

(ii) Reachability Matrix (Path Matrix)

 1 2 3 4 5 6

 1 0 1 1 1 0 1

 2 0 0 1 1 0 1

 3 0 0 0 1 0 1

 4 0 0 0 0 0 1

 5 1 1 1 1 0 1

 6 0 0 0 0 0 0

Q108. Write an algorithm for binary search. What are the conditions under which
sequential search of a list is preferred over binary search? (7)

 Ans.

Algorithm for Binary Search
1. if (low> high)

2. return (-1)

3. Mid = (low + high)/2

4. if (X = = a[mid])

5. return (mid);

6. if (X < a[mid])

7. search for X in a[low] to a[mid-1]

8. else

9. search for X in a[mid+1] to a[high]

Sequential Search is a preferred over binary search when the list is unordered
and haphazardly constructed. When searching is to be performed on unsorted
list then linear search is the only option.

Q109. Write an algorithm for selection sort. Describe the behaviours of selection sort

when the input is already sorted. (7)

Ans.

 Algorithm for Selection Sort
SELECTION (A, N)

This algorithm sorts the array A with N elements

1. Repeat steps 2 & 3 for K = 1,2……..N-1

2. Call MIN (A,K, N, LOC)

3. [Interchange A[K] and A[LOC].]

Set TEMP : = A[K], A[K]:=A[LOC] and A[LOC]: = TEMP,

[END of Step 1 loop]

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 99

4. EXIT

MIN (A, K, N, LOC)

An array A is in memory. This procedure finds the

location LOC of the smallest element among A[K],

A[K+1]………..A[N],

1. Set MIN : =A[K] and LOC:=K [Initialize pointer]

2. Repeat for J= K+1, K+2, …..N;

If MIN > A[J], then : set MIN: = A[J] and LOC:=J

[End of loop]

3. Return

The complexities of Selection sort are

Worst Case Average Case Best Case

O(n2) O(n2) O(n2)

So if the list is already sorted the it is the best case, then also the complexity of
algorithm is O(n2). Therefore, there is no change in behaviors of selection sort if
the list is already sorted.

Q110. Define the following terms:
(i) Abstract data type.
(ii) Column major ordering for arrays.
(iii) Adjacency multilist.
(iv) Game trees.
 (14)

 Ans.

(i) Abstract Data Type:- A useful tool for specifying the logical
properties of data type is the abstract data type or ADT. A data type is a
collection of values and a set of operation on those values. The term “ADT”
refer to the basic mathematical concept that defined the data types. ADT is
not concerned with implementation details at all. By specifying the
mathematical and logical properties of data type or structures, the ADT is a
useful guideline to implementation or a useful tool to programmers who wish
to use the data type correctly.
An ADT consists of 2 parts: a value definition and an operation definition
The value definition defines the collection of values for the ADT and
consists of 2 parts: a definition clause and a condition clause.
Operation definition: - Each operation is defined as an abstract form with 3
parts: a leader, the operational pre-condition and the post condition. Eg.
 /* value definition */
 abstract type def <integer, integer>RATIONAL;
 condition RATIONAL [1]! = 0

 /* operator definition */

 abstract RATIONAL Makerational (a, b)

 int a, b;

 precondition b! = 0;

 postcondition makerational[0] = = a;

 maKerational[1] = =b;

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 100

 (ii) Column Major Ordering for Array

 Let a be a 2 dimensional m x n array

 Col 0 Col 1 Col 2

Row 0 a00 a01 a02

Row 1 a10 a11 a12

Row 2 a20 a21 a22

Though a is pictured as a rectangular pattern with in row and n column it is
represented in memory by a Row of m x n elements .
Column major order:- the elements are stored column by column ie m
elements of the 1st column is stored in first m locations, elements of the 2nd
column are stored in next m location and so on.

a00

a10

a20

a01

a11

a21

a02

a12

a22

Column major order:-

Loc (a[i][j]) = base (a) + w [m (j – lbc) + (i – lbr)]
Where w is number of bytes per storage location for any one element of the
array.
M is the number of rows in an array.
lbr is lower bound for row index
lbc is the lower bound for column index.
 (iii) Adjacency Multilist
In the adjacency list representation of an undirected graph each edge (vi , vj) is
represented by 2 entries, one on the list for vi and the other list for vj. In some
situations it is necessary to be able to determine the 2nd entry for a particular
edge and mark that edge as already having been examined. This can be
accomplished easily if the adjacency lists are actually maintained as multilist
(ie. List in which nodes may be shared among several lists). For each edge
there will be exactly one node, but this node will be in 2 lists, i.e. the adjacency
list for each of the 2 nodes it is incident. The node structure now becomes

M V1 V2 Link for V1 Link for V2

Col 0

Col 1

Col 2

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 101

Where M is a one bit mark field to indicate whether or no edge has been
examined.
Let the graph be

Vertex

 1 N1 edge (1, 2)

2 N2 edge (1, 3)

3 N3 edge (1, 4

4 N4 edge (2, 3)

 N5 edge (

 N6 edge (3, 4)

The lists are

Vertex 1 : N1→ N2 →N3

Vertex 2 : N1→N4 →N5

Vertex 3 : N2 →N4 →N6

Vertex 4 : N3 →N5 →N6
 (iv) Game trees

 An interesting application of trees is the playing of games such as tie-tac-toe,
chess, nim, kalam, chess, go etc.
We can picture the sequence of possible moves by mean of a game tree in which

the root denotes the initial situation and the branches from the root denote the

legal moves that the first player could make. At next level down, the branches

corresponds to the legal move by the second player in situation and so on ,with

branches from vertices at even levels denoting moves by the 1st player and from

vertices at odd levels denoting moves by he 2nd player.

Eg. Tic-tac-toe

45

 1 2 N2 N4

 1 3 N3 N4

 1 4 0 N5

 2 3 N5 N6

 2 4 0 N6

 3 4 0 0

Edge(1 ,2)

Edge(1,3)

Edge(1,4)

Edge(2,3)

Edge(2,4)

Edge(3,4)

4

1

3
2

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 102

 X O

X

 O

X O X X O X O X O X O

 X X X X X X X

 O O X O X O O

 2 2 2 2 1

Q111. Describe various memory allocation strategies. (8)

Ans.

Memory Allocation Strategies

If it is not desirable to move blocks of allocated storage from one area of memory to
another, it must be possible to relocate memory blocks that have been freed
dynamically. Each time a request is made for storage, a free area large enough to
accommodate the size requested must be allocated. The most obvious methods for
keeping track of the free blocks is to use linear linked list. Each free block contains a
field containing the size of the blocks and a field containing a pointer to be next free
block. A global P for free block points to the 1st free block on this list. There are
several methods of selecting the free block to use at when requesting storage.
First – Fit Method:- The free list is traversed sequentially to find the 1st free block
whose size is larger than or equal to the amount requested. Once the block is found it
is removed from the list (if it is greater than the amount requested). The 1st of these
portions remains on the list and the 2nd is allocated.
Best – Fit Method:- This method obtains the smallest free block whose size is
greater than or equal to obtain such a block by traversing the entire free list follows.
Worst Fit method:- In this method the system always allocate a portion of the
largest free block in memory. The philosophy behind this method is that by using
small number of a very large block repeatedly to satisfy the majority of requested,
many moderately sized blocks will be left un-fragmented.
Free Storage List

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 103

First fit method

Start Address Length 0
 a

a 16K b

c 14K c

e 5K d

g 30K e

 f

 g

 h
Best Fit method

Start Address Length 0
 a

e 5K b

c 14K c

a 16K d

g 30K e

 f

 g

 h
Worst Fit Strategy

Start add Length Request

for 13K

OS

16K hole

In use

14K hole

In use

5K hole

In use

30K hole

Start add Length Request

for 13K

OS

16K hole

In use

14K hole

In use

5K hole

In use

30K hole

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 104

Q112. How memory is freed using Boundary tag method in the context of Dynamic
memory management? (6)

Ans.

Boundary Tag Method to free Memory

To remove an arbitrary block from the free list (to combine it with a newly freed
block) without traversing entire list, the free list must be doubly linked. Thus each
free block must contain 2 pointers, next and prev to the next and previous free block
on the free block. (This is needed when combining a newly freed block with a free
block that immediately precedes in memory). Thus the front of the free block must
be accessible from its rear. One way to do this is to introduce a bsize field at a given
offset from the last location of each free block. This field contains the same value as
the size filed at the front of the block. This field contains the some value as the size
field at the front of the block. The figure below illustrates the structure of free and
allocated blocks under this method which is called the boundary tag method.

 free block allocated block

Each of the contract fields fflag, size, next, prev, bsize and bflag is shown as
occupying a complete word, although in practice they may be packed together,
several fields to a word. We assume that fflag or bflag are logically flags and that
true indicates an allocated block and false indicates a free block. Using the
information in the free block and the newly freed block, the system merges the two
blocks into a bigger hole.

Q 113. Define a method for keeping two stacks within a single linear array S in such a
way that neither stack overflows until entire array is used and an entire stack is
never shifted to a different location within the array. Write routines for pushing
and poping elements in two stacks. (8)

Ans.

/* Two Stacks Into One Array */
#include<stdio.h>

#define MAX 50

int mainarray[MAX];

Fflag

Size

next
prev
unused
bsize

bflag

fflag

Used for non-
system
purposes

bflag

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 105

int top1=-1,top2=MAX;

void push1(int elm)

 {

 if((top2-top1)==1)

 {

 clrscr();

 printf("\n Array has been Filled !!!");

 return;

 }

 mainarray[++top1]=elm;

 }

void push2(int elm)

 {

 if((top2-top1)==1)

 {

 clrscr();

 printf("\n Array has been Filled !!!");

 return;

 }

 mainarray[--top2]=elm;

 }

int pop1()

 {

 int temp;

 if(top1<0)

 {

 clrscr();

 printf(" \n This Stack Is Empty !!!");

 return -1;

 }

 temp=mainarray[top1];

 top1--;

 return temp;

 }

int pop2()

 {

 int temp;

 if(top2>MAX-1)

 {

 clrscr();

 printf(" \n This Stack Is Empty !!!");

 return -1;

 }

 temp=mainarray[top2];

 top2++;

 return temp;

 }

Q114. Suppose a queue is housed in an array in circular fashion. It is desired to add
new items to the queue. Write down a procedure ENQ to achieve this also
checking whether the queue is full. Write another procedure DQ to delete an
element after checking queue empty status. (6)

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 106

Ans.

Add an element in Circular Queue
define MAXQUEUE 100

struct queue{

 int items[MAXQUEUE];

 int front, rear;

}

struct queue q;

q.front=q.rear=MAXQUEUE -1;

void ENQ(struct queue *pq, int x)

 {

 /* make room for new element*/

 if(pq ->rear = MAXQUEUE – 1)

 pq-> rear = 0;

 else

 (pq->rear)++;

 /* check for overflow */

 if(pq ->rear==pq->front)

 {

 printf(“queue overflow);

 exit(1);

 }

 pq->items[pq->rear]=x;

 return;

 }/* end of ENQ*/

Delete an element from Circular Queue
int DQ(struct queue *pq)

 {

 if(pq-> rear == pq-> front)

 {

 printf(“queue underflow”);

 exit(1);

 }/*end if*/

 if(pq->front = = MAXQUEUE-1)

 pq->front=0;

 else

 (pq->front)++;

 return(pq->items[pq->front]);

 }/*end DQ*/

Q115. What is a height balanced tree? Explain how the height is balanced after
addition/deletion of nodes in it? (7)

Ans.

Height Balanced Tree (AVL Tree)

An AVL tree is a binary search tree in which the height of the left and right
subtree of the root differ by at most 1 and in which the left and right subtrees
are again AVL trees. With each node of an AVL tree is associated with a
balanced factor that is left high, equal or right high, according, respectively, as

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 107

the left subtrees has height greater than, equal to, or less than that of the right
subtree.
The definition does not require that all leaves be on the same or adjacent

levels.
for example:

To achieve balance in an AVL tree after insertions and deletions, rotations are
carried out.
Rotation:-

Let r be the root of the tree and x be the root of its right subtree.
Case 1: right High

 R

 X

 h

 h
 h+1

Total height = h +3
 x

 r

 h h h+1

 Total height = h +2

-

-

-

- -

-

-

T1

\

T2 T3

-

-

T1 T2

T3

-

-

-

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 108

Item x is right high. The action needed in this case is called a left

rotation; we have rotated the node x upward to the root, dropping r down
into the left subtree of x; the subtree T2 of nodes with keys between those
of r and x now becomes the right subtree of r rather than the left subtree of
x.
Case 2: left high: it is carried out similar to right high case

Case 3:double rotation

 r

 x

 w
h

 h

 h-1
 or
 h

one of the T2 or 3 has height h
Total height = h + 3

 w

 r x

 h h-1 h
 h

Total height = h + 2
In this case it is necessary to move 2 levels to the node w that roots the left
subtree of x , to find the new root. This process is known as double rotation
because the transformation can be obtained in 2 steps by 1st rotating the subtree
within root x to the right (so that w becomes the root) and then rotating the tree
with root r to the left (moving w up do becomes the new root).

\\

T

1

/

T2 T3

T4

-

T1 T2 T3 T4

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 109

The new balance factors for r and x depends on the previous balance factor from
w.

Q116. Show the linked representation of the following two polynomials.

01x2x6x9

01x3x5x7

206090

305080

=−++

=+++

 Build a procedure for adding two polynomials stored in linked lists. Verify
 steps of your procedure for the above two polynomials. (7)

Ans.

 7x80 + 5x50 + 30x30 + 1 ----�1
9x90 + 6x60 + 2x 20 – 1 -----�2

Poly 1 can be represented as

Poly 2 can be represented as

The node of the polynomial is of the form

Coefficient of the term Power of x Link to next node

Procedure for Adding two Polynomials
 typedef struct node_type

{

 int coeff;

 int power;

 struct node_type *next;

}node;

node *poly;

void AddPolynomial(node *ptr1 , node *ptr2, node **ptr3)

{

 int powc;

int coef;

while((ptr1 !=NULL) && (ptr2! =NULL))

{

 if(ptr1->power > ptr2->power)

Poly 1

7 80 5 50 1 0 * 30 30

Poly 2

9 90 6 60 -1 0 * 2 20

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 110

{

 coef = ptr1 -> coeff;

powe = ptr1 -> power;

ptr1 = ptr1-> next;

}

else if(ptr1 -> power < ptr2-> power)

{

 coef = ptr2 -> coeff;

powe = ptr2 -> power;

ptr2 = ptr2-> next;

}

 else

 {

 coef = ptr1 -> coeff + ptr2 -> coeff;

powe = ptr1 -> power;

ptr1 = ptr1-> next;

ptr2 = ptr2-> next;

}

if(coef !=0)

 add_node(ptr3, coef , powe);

}

 if(ptr1 = = NULL)

 {

for(; ptr2 ! = (node *)NULL; ptr2 = ptr2-> next)

 add_node(ptr3, ptr2->coef , ptr2->powe);

 }

 else if(ptr2 = = NULL)

 {

 for(; ptr1 ! = NULL; ptr1 = ptr1-> next)

 add_node(ptr3, ptr1->coef , ptr1->powe);

}

coef=9

powe=90

add(ptr3,9,90)

coef = 7
powe=80
add(ptr3,7,80)

ptr3

9 90

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 111

Like this we keep continuing and finally we get

Q117. Write short notes on the following:

(i) Threaded binary trees.
(ii) Graph traversal.
(iii) Conversion of forest into tree.

(iv) Doubly linked list. (1443.5 =×)

Ans.

(i) Threaded Binary Tree:-

By changing the NULL lines in a binary tree to special links called threads, it is
possible to perform traversal, insertion and deletion without using either a stack
or recursion.

In a right in threaded binary tree each NULL link is replaced by a special link
to the successor of that node under inorder traversal called right threaded. Using
right threads we shall find it easy to do an inorder traversal of the tree, since we
need only follow either an ordinary link or a threaded to find the next node to
visit.

If we replace each NULL left link by a special link to the predecessor of the
node known as left threaded under inorder traversal the tree is known as left in

threaded binary tree. If both the left and right threads are present in tree then it
is known as fully threaded binary tree for example:

ptr3

9 90 7 80

ptr3

9 90 7 80 5 50 6 60 3 30

2 20 *

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 112

(ii) Graph Traversal
In many problems we wish to investigate all the vertices in a graph in some
systematic order. In graph we often do not have any one vertex singled out as special
and therefore the traversal may start at an arbitary vertex. The two famous methods
for traversing are:-
a) Depth first traversal: of a graph is roughly analogous to pre-order traversal of an
ordered tree. Suppose that the traversal has just visited a vertex or, and let W0,
W1,……Wk be the vertices adjacent to V. Then we shall next visit W0 and keep
W1…..Wk waiting. After visiting W0 we traverse all the vertices to which it is
adjacent before returning to traverse W1, W2, ……..Wk.
b) Breadth first: of a graph is roughly analogous to level by level traversal of
ordered tree. If the traversal has just visited a vertex V, then it next visits all the
vertices adjacent to V. Puting the vertices adjacent to these is a waiting list to be
traversed after all the vertices adjacent to V have been visited.

 1 2 3 1 2 3

 9 5 4 9 5 4

 6 7 8 6 7 8
 DFT BFT

DFT= 1 2 3 4 5 6 7 8 9
BFT = 1 2 9 3 5 6 4 7 8
(iii) Conversion of Forest into Tree

A binary tree may be used to represent an entire forest, since the next pointer in the
root of a tree can be used to point to the next tree of the forest. The following figure
illustrates a forest and its corresponding binary tree.
Initially the left tree is represented as a binary tree then the 2nd tree is made the right
child of the root node of the first tree and the 3rd tree is made the right child of the
root node of the 2nd tree.

A

B C

D E F

G

H

I J K

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 113

FOREST

BINARY TREE

L

M N O

P Q

R

A

B G

C

D

E

F

H L

I

J

K

M

P N

R Q O

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 114

(iv) Double Linked List

In a doubly linked list, also called as 2 way list, each node is divided into 3 parts.
The first part is called previous pointer field. It contains the address of the
preceding elements in the list. The second part contains the information of the
element and the third part is called next pointer field. It contains the address of
the succeeding elements in the list. In addition 2 pointer variable HEAD and
TAIL are used that contains the address of the 1st element or the address of the
last element of the list. Doubly linked list can be traversed in both directions.

 Next pointer field of 1st node
 Information filed of the 1st node
 Previous pointer fields of first node

Q118. Differentiate between system defined data types and Abstract data types with

suitable examples. (8)

Ans.

Abstract Data Type:- A useful tool for specifying the logical properties of data
type is the abstract data type or ADT. A data type is a collection of values and a set
of operation on those values. The term “ADT” refer to the basic mathematical
concept that defined the data types. ADT is not concerned with implementation
details at all. By specifying the mathematical and logical properties of data type or
structures, the ADT is a useful guideline to implementation or a useful tool to
programmers who wish to use the data type correctly.
An ADT consists of 2 parts: a value definition and an operation definition
 The value definition defines the collection of values for the ADT and consists of
2 parts: a definition clause and a condition clause.
Operation definition: - Each operation is defined as an abstract form with 3 parts:
a leader, the operational pre-condition and the post condition. Eg.
 /* value definition */
 abstract type def <integer, integer>RATIONAL;

 condition RATIONAL [1]! = 0

 /* operator definition */

 abstract RATIONAL Makerational (a, b)

 int a, b;

 precondition b! = 0;

 postcondition makerational[0] = = a;

 maherational[1] = =b;

System defined data types:-
These are data types that have been defined by the compiler of any program. The C
language contains 4 basic data types:- int, float, char and double. There are 4
qualifier that can be applied to ints:- short, long, unsigned.
A variable declaration in C specifies 2 things:-

Head

X R00 R05 R09 x

Tail

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 115

First it specifies the amount of storage that must be set aside for object declared
with that type.
 Second it specifies how data represented by string of bits are to be interpreted.
The some bits at a specific location can be interpreted as an int of a floating-point
number, yielding 2 completely different numeric values.
In ADT’s we are not concerned with space or time efficiency.
 It is not possible to implement a particular ADT on a particular piece of hardware
or using a particular software system.

Q119. Explain the following:
(i) Complexity of an Algorithm.
(ii) The space-time trade off algorithm. (6)

Ans.

(i) Complexity of an Algorithm

An algorithm is a sequence of steps to solve a problem; there may be more than
one algorithm to solve a problem. The choice of a particular algorithm depends
upon following consideration:-
1) Time Complexity
2) Space Complexity
Time Complexity:- The time complexity of an algorithm is the amount of time it
needs to run to completion. Some of the reasons for studying time complexity
are:-
� We may be interested to know in advance whether the program will provide
a satisfactory real time response.
� There may be several possible solutions with different time requirement.
Space Complexity:- The space complexity of an algorithm is the amount of
memory it needs to run to completion. Some of the reasons to study space
complexity are: -
� There may be several possible solutions with in different space requirement.
� To estimate the size of the largest problem that a program can solve.
 (ii) The Space – Time Trade Off

The best algorithm to solve a given problem is one that requires less space in
memory and takes less time to complete its execution. But in practice it is not
always possible to achieve both of these objectives. There may be more than one
approach to solve a problem. One approach may require more space but less time
to complete its execution. The 2nd approach may require less space but takes more
time to complete execution. We choose 1st approach if time is a constraint and 2nd
approach if space is a constraint. Thus we may have to sacrifice one at cost of the
other. That is what we can say that there exists a time space trade among
algorithm.

Q120. Define a sparse matrix. Explain different types of sparse matrices? Show how a

triangular array is stored in memory. Evaluate the method to calculate address of
any element ajk of a matrix stored in memory. (10)

Ans.

Sparse Matrix

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 116

A m x n matrix A is said to be sparse if MOST of its elements are zero. A matrix
that is not sparse is called dense matrix.
Types of Sparse matrix
1) Diagonal Matrix

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

This is the square matrix where the non zero elements are only where row = col ie at
diagonal.

2) Tridiagonal Matrix

X x
X x x
 X x x
 X x x
 - - -
 x x

In this square matrix all elements other than those on and on the diagonals
immediately above and below this one are zero.
Triangular Matrices

Tiangular Matrices is of 2 types:
a) Lower triangular
b) Upper triangular

2 0 0 0 2 1 8 6
3 5 0 0 0 5 3 4
8 6 7 0 0 0 7 2
4 1 4 9 0 0 0 9

 Lower Upper
In an n*n lower triangular matrix A, row 1 has one non zero element, row 2 has 2,
….., and row n has n. whereas, in an n*n upper triangular matrix A, row 1 has n non
zero elements, row 2 has n-1 ,…. , and row n has 1. In both the cases, the total
number of non-zero elements is n(n+1)/2.
Both of these matrices can be represented using an one dimensional array la of size
n(n+1)/2.
Consider lower triangular matrix L. the elements can be mapped by rows or by
columns.
In a row-wise mapping, the element L[i,j], i>=j, is preceded by ∑k for k=1 to i-1,
elements that are in row 1 through i-1, and j-1 such elements from row i. the total

number of elements that precede it in a row-wise mapping is
()

1
2

1
−+

−
j

ii
. This

expression also gives the position l[i,j] in la.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 117

Method to calculate address of any element ajk of a matrix stored in

memory.
Let us consider 2 dimensional array a of size m*n further consider that the lower
bound for the row index is lbr and for column index is lbc.

Like linear array, system keeps track of the first element only i.e. , the base
address of the array.
Using this base address, the computer computes the address of the element in the
ith row and jth column i.e. loc(a[i][j]), using the following formulae:
Column major order:-

Loc (a[i][j]) = base (a) + w [m (j – lbc) + (i – lbr)] in general
Row major order:-

Loc (a[i][j]) = base (a) + w [n(i – lbr) + (j – lbc)] in general
Where w is number of bytes per storage location for any one element of the array.

Q121. A linear array A is given with lower bound as 1. If address of A[25] is 375 and

A[30] is 390, then find address of A[16]. (4)

Ans.

Loc (a[k]) = base (a) + w (k-lb)
375 = base (a) + w(25 – 1)
390 = base (a) + w(30 – 1)
375 = x + 24w
390 = x + 29w

15 = 5w

∴ w = 3

∴ x = 375 – 24 *3
x = 375 – 72
x = 303

∴base address is 303 and w = 3.

∴Address of A[16] is
loc = 303+ 3(16-1) = 348.

Q122. Let a binary tree ‘T’ be in memory. Write a procedure to delete all terminal

nodes of the tree. (8)

Ans.

function to Delete Terminal Nodes from Binary Tree
void deleteleaves(struct node* root,struct node* prev)

 {

 if(root)

 {

 if(root->left==NULL&&root->right==NULL)

 {

 if(prev->item>=root->item)

 prev->left=NULL;

 else

 prev->right=NULL;

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 118

 printf("\n\n %d Is Being Deleted ...",root->item);

 free(root);

 return;

 }

 deleteleaves(root->left,root);

 deleteleaves(root->right,root);

 }

}

the call to this function will deleteleaves (root, root).

Q123. Consider the following eight numbers 50, 33, 44, 22, 77, 35, 60 and 40. Display
the construction of the binary by inserting the above numbers in the given order.
 (6)

 Ans. 50 33 44 22 77 35 60 40

 44

 22

50

33

50

33

44

50

33

22 44

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 119

72

35

50

33

22 44

77

50

33
77

22 44

35

55

33

22 44

35

77

60

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 120

40

Q124. Can a Queue be represented by circular linked list with only one pointer
pointing to the tail of the queue? Substantiate your answer using an example.
 (5)

Ans.

Yes a Queue can be represented by a circular linked list with only one pointer
pointing to the tail of the queue.

 for example:

 Queue(Q)

Q has a pointer pointing to the tail of ‘Q’.
This pointer represents real of the Q and ptr->next is the front of Q.

Q125. Establish the usage of linked lists for polynomial manipulation. (5)

Ans.

Usage of Linked List for Polynomial Manipulation.

linked lists are frequently used for maintaining polynomial in memory. for
example:
A polynomial of type 4x3 + 6x2 + 10x +6
can be represented using following linked list.

10 11 12 13

50

33

22 44

35

40

77

60

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 121

Where a node of the form

Coefficient of the term Power of x Link to next node

A linked list can be used for adding the two polynomial

Q126. Convert the following infix expressions to postfix notation

(i) A+((B+C)*(D+E)+F/G)

(ii) DCBA ∗↑↑ (4)

 Ans.

 In Fix Post Fix

(i) A + (((B + C) * (D +E)) + (F/G)) ABC +DE+*FG/++

(i) (A ↑ B ↑ C)) * D ABC↑↑D*

Q127. Explain Hash Tables, Hash function and Hashing Techniques? (8)

 Ans.

 Hash Table:
A hash table is a data structure in which the location of a data item is determined
directly as a function of data item itself rather than by a sequence of comparison.
Under ideal condition, the time required to locate a data item in a hash table is
0(1) ie. It is constant and DOES not depend on the number of data items stored.
When the set of K of keys stored is much smaller then the universe U of all
possible keys, a hash table require much less storage spare than a direct address
table.
Hash Function

A hash function h is simply a mathematical formula that manipulates the key in
some form to compute the index for this key in the hash table. Eg a hash function
can divide the key by some number, usually the size of the hash table and return
remainder as the index for the key. In general, we say that a hash function h
maps the universe U of keys into the slots of a hash table T[0….n-1]. This
process of mapping keys to appropriate slots in a hash table is known as
hashing.

 The main reconsideration for choosing hash function is :-
1) It should be possible to compute it efficiently.

Poly

4 3 6 2 10 1 6 0 x

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 122

2) It should distribute the keys uniformly across the hash table i.e. it should
keep the number. of collisions as minimum as possible.
Hashing Techniques:
There is variety of hashing techniques. Some of them are:-
a) Division Method:- In this method, key K to be mapped into one of the m
states in the hash table is divided by m and the remainder of this division taken
as index into the hash table. That is the hash function is
h(k) = k mod m
 where mod is the modules operation.

b) Multiplication Method: The multiplication method operates in 2 steps. In
the 1st step the key value K is multiplied by a constant A in the range O<A<1 and
the fractional part of the value obtained above is multiplied by m and the floor of
the result is taken as the hash values. That is the hash function is
 h(k) = [m (K A mod 1)]

where “K A mod 1” means the fractional part KA of KA-[KA].A
A= (5-1/2)=0.6180334887

(c) Midsquare Method:- this operates in 2 steps. In the first step the square of the
key value K is taken. In the 2nd step, the hash value is obtained by deleting digits
from ends of the squared values ie. K2. The hash function is
 h(k) = s
 where s is obtained by deleting digits from both sides of K2.

Q128. Define a linked-list? How are these stored in the memory? Suppose the linked
list in the memory consisting of numerical values. Write a procedure for each of
the following:

 (i) To find the maximum MAX of the values in the list.
 (ii) To find the average MEAN of the values in the list.
 (iii) To find the product PROD of the values in the list. (14)

Ans.

Linked List :-
 A linked list is a linear collection of data elements called nodes. The linear order
is given by pointer. Each node is divided into 2 or more parts. A linked list can be
of the following types:-
� Linear linked list or one way list
� Doubly linked list or two way list.
� Circular linked list
� Header linked list
Representation of Linked list in Memory:-

Every node has an info part and a pointer to the next node also called as link. The
number of pointers is two in case of doubly linked list. for example :

 Head �

 Node 1 Node 2 Node 3

An external pointer points to the beginning of the list and last node in list has
NULL. The space is allocated for nodes in the list using malloc or calloc

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 123

functions. The nodes of the list are scattered in the memory with links to give
linear order to the list.
(i)

float MAX_OF(node * start)

 {

 n=start;

 max=n->k;

 while(n!= NULL)

 {

 if(max<=n->k)

 max=n->k;

 }

 return max;

(ii) float MEAN_OF(struct node * start)

 {

 int h=0; struct node *n;

 n=start;

 while (n!= NULL)

 {

 s+=n->k;h++;

 n=n->next;

 }

 return s/h;

 }

(iii) float PROD_OF(node *start)

 {

float p; struct node *n;

 n=start;

 while(n!= NULL)

 {

 p*=n->k;

 n=n->next;

 }

return p;

 }

Q129. Using array to implement the queue structure, write an algorithm/program to
 (i) Insert an element in the queue.

 (ii) Delete an element from the queue. (9)

 Ans.

 (i) Algorithm to Insert an element in the queue.
QINSERT(QUEUE, N, FRONT, REAR, ITEM)

This procedure inserts an elements ITEM into a queue.

1. [QUEUE already filled ?]

if FRONT =1 and REAR =N or if FRONT = REAR +1 then

write:OVERFLOW, and Return.

2. [Find new value of REAR]

If FRONT : = NULL, then : [QUEUE initially empty]

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 124

Set FRONT : = 1 and REAR : = 1,

Else if REAR = N then;

Set REAR : = 1

Else:

 Set REAR : = REAR + 1

[End of if structure]

3.Set QUEUE [REAR]: = ITEM [This inserts new elements]

4. Return

 (ii) Algorithm to delete an element from the Queue
QDELETE (QUEUE, N, FRONT, REAR, ITEM)

This procedure deletes an element from a Queue and

assign it to the variable ITEM.

1. [Queue already Empty?]

If FRONT:= NULL, then write UNDERFLOW and Return

2. Set ITEM:=QUEUE[FRONT]

3. [Find new value of FRONT]

If FRONT=REAR, THEN[Queue has only one element to

start.]

 Set FRONT:=NULL and REAR:=NULL

Else if FRONT=N then:

 Set FRONT:=1

 Else:

 Set FRONT:=FRONT+1

[End of If structure]

4. Return.

Q130. Define a stack. Describe ways to implement stack. (5)

Ans.

STACK:
A stack is one of the most commonly used data structure. A stack is also called a

Last-In-First-Out (LIFO) system, is a linear list in which insertion or deletion can

take place only at one end called the top. This structure operates in the same way

as the stack of trays If we want to place another tray, it can be placed only at the

top. Similarly, if we want to remove a tray from stack of trays, it can only be

removed from the top. The insertion and deletion operations in stack terminology

are known as PUSH and POP operation.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 125

5
4 6 TOP TOP

3 5 2 12

2 12 1 10

1 10 0 8
0 8

 (a) (b)

(a) Stack after pushing elements 8,10,12,5,6
(b) Stack after popping 2 elements.
Implementation of Stack

 Stacks can be implemented in the following 2 ways:
a) Arrays
b) Linked List
a) Arrays:- To implement a stack we need a variable called top, that holds the
index of the top element of stack and an array to hold the element of the stack.
For example:- #define MAX 100
 Typedef struct
 { int top;
 int elements [MAX]
 } stack;
b) Linked List:- A stack represented using a linked list is known as linked stack.
The array based representation of stack suffers from following limitations.
� Size of stack must be known in advance
� Overflow condition might occur.
The linked representation allows a stack to grow to a limit of the computer’s
memory.
for example:- typedef struct node
 {
 int info;
 struct node * next;
 } stack;
 stack * top;

Q131. Sort the following list using Heap Sort technique, displaying each step.
 20, 12, 25 6, 10, 15, 13 (7)

 Ans.

 HEAP SORT

Let the following numbers be stored in array.
20, 12, 25, 6, 10, 15, 13

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 126

 First we create the heap from the above binary tree:-

Now the above tree is a heap. Therefore, we store the above tree in an implicit
representation of tree in an array.

25 12 20 6 10 15 13

Therefore 25 is target we place 25 in last of array.

20 12 15 6 10 13 25

Now put 20 in its proper position by replacing 13

15 12 13 6 10 20 25

25

12

6 10

20

15 13

20

12

6 10

15

13

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 127

After reheapifying

13 12 6 10 15 20 25

12 10 6 13 15 20 25

10 6 12 13 15 20 25

6 10 12 13 15 20 25

15

12

6 10

13

13

12

6

10

12

10
6

10

6

6

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 128

Q132. Give the binary search algorithm. (7)

 Ans.
Binary Search Algorithm
1. if (low > high)

2. return (-1)

3. mid = (low +high)/2;

4. if (X = = a [mid])

5. return (mid);

6. if (X < a [mid])

7. search for X in a (low) to [mid –1];

8. else

9. search for X in a [mid + 1] to a [high];

Q133. What do you understand by structured programming? Explain. (5)

 Ans.

 Structured Programming

 This term is used for programming design that emphasizes:-
(1) Hierarchical design of programming structure using only the simple control

forms of comparison, alteration and iteration.
(2) Representation of the hierarchical design directly in the program text, using the

structured control statement.
(3) Program text in which the textured sequence if statements corresponds to the

execution sequence.
(4) Use of single purpose groups of stack even if statement must be copied when a

program is written by following these tenets of structural programming, it is
much easier to understand, debug, verify to be correct and take modify and re-
verify. Eg. C, Java, C ++

Q.134. Give the adjacency matrix and adjacency list of the following graphs.

 (6)

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 129

 Ans.

Adjacency Matrix

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 130

Adjacency List

Q135. Consider the algebraic expression
 E = (5x+z) (3a-b)2

(i) Draw the expression tree corresponding to E
 (ii) Find the scope of exponential operator i.e. the subtree rooted at the
 exponential operator. (7)

Ans.

E = (5x + z) * (3a - b)2

 = (5x + z) * (3a - b) * (3a - b)

 H

 E I

 E

 B X

 B
 F X

 X

 A

 B

 C

 D

 E

 F

 G

 H

 I

 B C X

 B D F X

 X

 X

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 131

(i)

(5x - 2) * (3a - b)^ 2

ii) the scope of exponential(^) is the tree shown below in the figure. It corresponds to
the subexpression(3a-b)2

Q136. Write an algorithm to evaluate an expression given in postfix notation. Show the
execution of your algorithm for the following expression.

 AB^CD-EF/GH+/+* (7)

Ans.

 Algorithm to evaluate Post fix Expression
Opndstk = the empty stack;

/*scan the input string reading one */

/*element at a time into symb */

while (not end of input){

*

+

*

 5 x

 Z

 ↑

-

*

 3 a

 b

 2

-

*

 3 a

 b

 2

 E

=

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 132

 symb = next input character;

 if (symb is an operand)

 push (opndstk, symb);

 else

 {

 /* symb is an operator */

 opnd 2 = Pop (opnd stk);

 opnd 1 = Pop (opnd stk);

 value = result of applying symb to opnd 1 and opnd 2;

 push (opndstk,value);

 }/*end else */

}/*end while */

return (pop (opnd stk));

AB^CD-EF/GH+/+*

Symb Opnd1 Opnd2 Value Opndstk

A A

B A,B

^ A B A^B A^B

C A B A^B A^B,C

D A B A^B A^B,C,D

- C D C-D A^B,C-D

E C D C-D A^B,C-D,E

F C D C-D A^B,C-D,E,F

/ E F E/F A^B,C-D,E/F

G E F E/F A^B,C-D,E/F,G

H E F E/F A^B,C-D,E/F,G,H

+ G H G+H A^B,C-D,E/F,G+H

/ E/F G+H (E/F)/(G+H) A^B,C-D, (E/F) /(G+H)

+ C-D (E/F)/(G+H) (C-D)+(E/F)/(G+H) A^B,(C-D)+
(E/F)/(G+H)

* A^B (C-
D)+(E/F)/(G+H)

A^B*((C-D)+
(E/F)/(G+H))

A^B*((C-D)+
(E/F)/(G+H))

Q137. Define an array. How does an array differ from an ordinary variable? How are
arrays represented in the memory? (5)

Ans.

 Array Vs. Ordinary Variable
Array is made up of similar data structure that exists in any language. Array is set
of similar data types. Array is the collection of similar elements. These similar
elements could be all int or all float or all char etc. Array of char is known as
string. All elements of the given array must be of same type. Array is finite
ordered set of homogeneous elements. The number of elements in the array is pre-
specified.
For example. Ordinary variable: - int a
Array: - int a[10]

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 133

An ordinary variable ofa simple data type can store a single element only
Representation of Array in memory

Let a be a 2 dimensional m x n array

 Col 0 Col 1 Col 2

 Row 0 a00 a01 a02

 Row 1 a10 a11 a12

 Row 2 a20 a21 a22

Though a is pictured as a rectangular pattern with in row and n column it is
represented in memory by a row of m x n elements. Sequential memory locations
the element can be stored in row major order.
Column major order:- the elements are stored column by column ie m elements of
the 1st column is stored in first m locations, elements of the 2nd column are stored in
next m location and so on..

a00

a10

a20

a01

a11

a21

a01

a11

a22

Row major order:-
The elements are stored row by row ie. N elements of the 1st row are stored in 1st n
location, elements of 2nd row are stored in next n location, and so on

a00

a01

a02

a10

a11

a12

a20

a21

a22

Q138. Consider an array A[20, 10]. Assume 4 words per memory cell and the base
address of array A is 100. Find the address of A[11, 5] assuming row major
storage. (5)

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 134

Ans.

 A[20, 10]
 W = 4 words
 Base (A) = 100

 A [11, 5] → in row major m x n
loc [a [i] [j] = base (a) + w [n [i – lbr] + (j – lbc)]

 = 100 + 4 [10 (11) + 5]
 = 100 + 4[110+5]
 =100 + 115 *4
 = 560

Q139. Write an algorithm to convert an infix expression into postfix expression. (8)

Ans.

 Algorithm to convert infix expression to post fix expression.
1. opstk = the empty stack;

2. while (not end of input) {

3. symb = next input character;

4. if (symb is an operand) add symb to postfix string

5. else {

6. while (!empty (opstk) and prcd (top (opstk),

symb)>0){

7. topsymb = pop(opstk);

8. add topsymb to the postfix string; }/*end while*/

9. if (empty (opstk) || symb! = ‘)’) push (opstk,

symb); else /*pop the open parenthesis and

discard it */

 topsymb = pop(opstk);

} /* end else */

 }/* end while */

 /* output any remaining operator */

10.while (!empty (opstk)){

11. top symb = pop (opstk);

12. add topsymb to the postfix string;

 } /* end while * /

/*output any remaining operator*/

Q140. Suggest a way of implementing two stacks in one array such that as long as
space is there in an array, you should be able to add an element in either stack.
Using proposed method, write algorithms for push and pop operations for both
the stacks. (6)

Ans.
 /* Two Stacks Into One Array */

#include<stdio.h>

#define MAX 50

int mainarray[MAX];

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 135

int top1=-1,top2=MAX;

void push1(int elm)

 {

 if((top2-top1)==1)

 {

 clrscr();

 printf("\n Array has been Filled !!!");

 return;

 }

 mainarray[++top1]=elm;

 }

void push2(int elm)

 {

 if((top2-top1)==1)

 {

 clrscr();

 printf("\n Array has been Filled !!!");

 return;

 }

 mainarray[--top2]=elm;

 }

int pop1()

 {

 int temp;

 if(top1<0)

 {

 clrscr();

 printf(" \n This Stack is Empty !!!");

 return -1;

 }

 temp=mainarray[top1];

 top1--;

 return temp;

 }

int pop2()

 {

 int temp;

 if(top2>MAX-1)

 {

 clrscr();

 printf(" \n This Stack Is Empty !!!");

 return -1;

 }

 temp=mainarray[top2];

 top2++;

 return temp;

 }

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 136

Q141. Write an algorithm to insert a node p at the end of a linked list. (5)

Ans.

Algorithm to Insert a Node p at the End of a Linked List
Step1: [check for space]

 If new1= NULL output “OVERFLOW”

 And exit

Step2: [Allocate free space]

 New1 = create new node.

Step3: [Read value of information part of a new

node]

 Info[new1]=value

Step4: [Move the pointer to the end of the list]

node = previous=strt

 Repeat while Node != NULL

 Previous=node

Node = Next[Node]

Step5: [Link currently created node with the

last node of the list]

 Next[New1] = Node

 Next[Previous] = New1

Step6: Exit.

Q142. Write down any four applications of queues. (4)

Ans.

Application of Queue

(i) Queue is used in time sharing system in which programs with the same
priority form a queue while waiting to be executed.

(ii) Queue is used for performing level order traversal of a binary tree and for
performing breadth first search at a graph.

(ii) Used in simulation related problem.
(iii) When jobs are submitted to a networked printer, they are arranged in order of

arrival, ie. Jobs are placed in a queue.

Q.143 Draw a binary tree from its inorder and preorder traversal sequences given as

follows:
 Inorder : d b g e h a c n f
 Preorder : a b d e g h c f n (7)

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 137

Ans.

 Inorder :

 LTA Root RTA

d,b,g,e,h a c,n,f

Preorder :

Root LTA RTA

a b,d,e,g,h c,f,n

Let us consider LTA.
In order : d, b, g, e, h
Preorder : b,d, e, g, h

Let us consider RTB
In order : g , e , h
Pre order : e, g, h

 a

 c,n,f d,b,g,e,n

a

b

d
g,e,h(RTB
)

c,n,f(RTA
)

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 138

Let us consider RTA
In order : c,n,f,RTC
Pre order : c, F , n
Hence the tree is

Let us consider RTC
In order : f, n
Pre order : n , f (root)

Final tree

a

b

d e

c,n,f

g
h

a
c

n,f(RTC)

a

b

d e

g
h

c

f

n

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 139

Q144. Write an algorithm that counts number of nodes in a linked list. (5)

Ans.

Algorithm to Count No. of Nodes in Linked List

 COUNT (INFO, LINK, START, NUM)
1. Set NUM: = 0 [initializes counter]

2. Set PTR=START [initializes pointer]

3. Repeat steps 4 & 5 while PTR! = NULL

4. Set NUM:= NUM + 1 [increases NUM by 1]

5. Set PTR: =LINK [PTR] . [updates pointer to

point to next node]

[End of step 3 loop]

6. Return

Q145. Write an algorithm to add an element at the end of circular linked list. (5)

Ans.

 Algorithm to Add the Element at the End of Circular Linked List.
IINSENDCLL(INFO, LINK, START, AVAIL, ITEM)

The algorithm deletes last element from the

circular linked list.

1. [OVERFLOW?] if AVAIL = NULL, then Write:

OVERFLOW, and Exit.

2. [Remove first node from the AVAIL: =

LIN[AVAIL].

a. Set NEW:= AVAIL and AVAIL:=LINK[AVAIL].

3. Set INFO[NEW]:=ITEM. [copies new data into new

node.]

4. Set PTR:= LINK[START] and

SAVE:=START.[initializes popinters]

5. Repeat while LINK[PTR]!=START: [Traverses list

seeking last node.]

a. Set PTR:=LINK[PTR]. [Updates PTR]

 [End of loop]

6. Set LINK [PTR]:= NEW. [Attaches new node to

the last node of the list]

7. Set LINK[NEW]:= START [New node now points to

the original first node.]

8. Exit

Q146. Delete a given node from a doubly linked list. (4)

 Ans.

 Delete a Node from Double Linked List
DELETEDBL(INFO, FORW, BACK, START, AVAIL,LOC)

1. [Delete Node]

Set FORW [BACK [LOC]]:= FORW[LOC]&

BACK [FORW[LOC]]:=BACK[LOC].

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 140

2. [Return node to AVAJL list]

Set FORW[LOC]:=AVAIL & AVAIL:=LOC

3. Exit.

Q147. Write an algorithm to sort a given list using Quick sort method. Describe the

behaviour of Quick sort when input is already sorted. (7)

 Ans.

 Algorithm for Quick Sort
 QUICK(A, N, BEG, END, LOC)

 Here A is an array with N element. Parameter BEG

and END contain the boundary value of the sub

list of A to which this procedure applies. LOC

keeps track of the position of the first element

A[BEG] of the sublist during the procedure. The

local varrible LEFT and RIGHT will contain the

boundary value of the list elements that have not

been scanned.

 1. [Initialize] Set LEFT:=BEG, RIGHT;=END and

 LOC:=BEG.

 2. [Scan from left to right]

 (a) Repeat while A[LOC] <=A[RIGHT] and

 LOC!=RIGHT;

 RIGHT:=RIGHT-1;

 [End of loop]

 (b)If LOC= RIGHT, then Return;

 (c)If A[LOC] > A[RIGHT],then:

 [Interchange A[LOC] and A[RIGHT]]

TEMP:= A[LOC] ,A[LOC] = A[RIGHT] ,

A[RIGHT] :=TEMP;

(i) Set LOC =RIGHT

(ii) Go to step 3

 3.[Scan from left to right]

 repeat while A[LEFT] <=A[LOC] and LEFT!= LOC;

LEFT := LEFT +1;

 [End of loop]

(a) If LOC =LEFT, then Return;

(b) If A[LEFT] > A[LOC] ,then

(i) [Interchange A[LEFT] and A[LOC]]

 TEMP:=A[LOC],A[LOC]:=A[LEFT] .

 A[LEFT]:= TEMP

(ii) Set LOC :=LEFT

(iii) Go to Step 2;

[End of if structure]

(Quicksort) This algorithm sorts an array A with

N elements.

1. [Intialize.] TOP := NULL

2. [Push boundary values of A onto stacks when A

has 2 or more elements.]

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 141

If N>1, then: TOP+1,LOWER [1]:=1, UPPER [1]: =N

3. Repeat steps 4 to 7 while TOP != NULL.

4. [Pop sublist from stacks.]

Set BEG: =LOWER[TOP], END:=UPPER[TOP],

TOP:=TOP-1.

5. Call QUICK (A, N, BEG, END, LOC). [Push left

sublist onto stacks when it has 2 or more

elements.]

If BEG < LOC –1, then:

 TOP:= TOP+1, LOWER[TOP] := BEG,

 UPPER[TOP]= LOC –1.

[End of If structure.]

6. [Push right sublist onto stacks when it has 2

or more elements.]

If LOC +1< END , then:

 TOP := TOP+1, LOWER[TOP] := LOC +1,

 UPPER[TOP] := END.

[End of If structure .]

[End of Step 3 loop.]

7. Exit.

The behaviour of quick sort when the list is sorted

is of order O(n2)

as this is the worst case for quicksort

Q148. Sort the following list using Heap Sort
 66, 33, 40, 20, 50, 88, 60, 11, 77, 30, 45, 65. (7)

 Ans.

 Heap Sort

Let the array represents implicit representation:-

66 33 40 20 50 88 60 11 77 30 45 65

66

33
40

20 50 88 60

11 77 30 45 65

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 142

First let us make the heap.

66

33
88

77 50 40 60

11 20 30 45 65

66

77
88

33 50 65 60

11 20 30 45 40

88

77
66

33 50 65 60

11 20 30 45 40

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 143

The above is new heap satisfying all conditions of heap.

Place 88 at its proper position and replace 40

88

77

88 77 66 33 50 65 60 11 20 30 45 40

77

50
66

33 45 65 60

11 20 30 40

77 50 66 33 45 60 65 11 20 30 40 88

66

50
65

33 45 60 40

11 20 30

66 50 65 33 45 60 40 11 20 30 77 88

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 144

66

65

65

50
60

33 45 30 40

11 20

65 50 60 33 45 30 40 11 20 66 77 88

60

50
40

33 45 30 20

11

60 50 40 33 45 30 20 11 65 66 77 88

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 145

60

50

45

50

45
40

33 11 30 20

50 45 40 33 11 30 20 60 65 66 77 88

45

33
40

20 11 30

45 33 40 20 11 30 50 60 65 66 77 88

40

33
30

20 11

40 33 30 20 11 45 50 60 65 66 77 88

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 146

40

33

30

20

Finally we have the sorted list.

33

20
30

11

33 20 30 11 40 45 50 60 65 66 77 88

30

20
11

30 20 11 40 45 50 60 65 66 77 88

20

11

20 11 30 40 45 50 60 65 66 77 88

11

11 20 30 40 45 50 60 65 66 77 88

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 147

Q149. Write a recursive function to count the number of nodes in a binary tree. (7)

 Ans.

 Recursive Function to count no. of Nodes in Binary Tree

The number NUM of nodes in T is 1 more than the number NULL of nodes in
the left subtree of T plus the number NUMR of nodes in the right subtree of T.
Count(LEFT , RIGHT , ROOT , NUM.)

 This procedure finds the number NUM of nodes in a

binary tree T in memory.

1. If ROOT = NULL, then : Set NUM := 0, & Return.

2. Call COUNT(LEFT , RIGHT , LEFT[ROOT], NUML).

3. Call COUNT (LEFT , RIGHT, RIGHT[ROOT], NUMR).

4. Set NUM := NUML +NUMR+1.

5. Return.

Q150. Define the following :

(i) AVL tree.
(ii) Thread.
(iii) Heap.
(iv) Binary Search Tree. (8)

Ans

 (i) Height Balanced Tree (AVL Tree)

An AVL tree is a binary search tree in which the height of the left and right subtree
of the root differ by at most 1 and in which the left and right subtrees are again AVL
trees. With each node of an AVL tree is associated with a balanced factor that is left
high, equal or right high, according, respectively, as the left subtrees has height
greater than, equal to, or less than that of the right subtree.
The definition does not require that all leaves be on the same or adjacent levels.
for example

(ii) Thread

By changing the NULL lines in a binary tree to special links called threads, it is
possible to perform traversal, insertion and deletion without using either a stack or
recursion.
In a right in threaded binary tree each NULL link is replaced by a special link to
the successor of that node under inorder traversal called right threaded. Using right

-

-

-

-

-

-

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 148

threads we shall find it easy to do an inorder traversal of the tree, since we need
only follow either an ordinary link or a threaded to find the next node to visit.
If we replace each NULL left link by a special link to the predecessor of the node
known as left threaded under inorder traversal the tree is known as left in threaded

binary tree. If both the left and right threads are present in tree then it is known as

fully threaded binary tree.

 Fully threaded binary tree

(iii) HEAP

A heap is defined to be a binary tree with a key in each node, such that
1-All the leaves of the tree are on 2 adjacent levels.
2- All leaves on the lowest level occur to the left & all levels except possibly the
lowest are filled.
3- The information the root is at least as large as the keys in its children (if any) &
the left & right sub trees (if they exist) are again heap.

 for example

y r p d f b k a c

(iv) Binary search tree.

A binary search tree is a binary tree that is either empty or in which each node
contains a key that satisfies the following conditions: -
� All keys (if any) in the left sub tree of the root precede the key in the root.

y

r p

d
f b k

a c

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 149

� The key in the root precedes all keys (if any) in its right sub tree.
� The left and right sub trees of the root are again search trees.

Q151. Write an algorithm for searching a key from a sorted list using binary search
technique. (6)

 Ans.
 Binary Search Algorithm

1. if (low > high)

2. return (-1)

3. mid = (low +high)/2;

4 .if (X = = a [mid])

5 return (mid);

6 if (X < a [mid])

7 search for X in a (low) to [mid –1];

8 else

9 search for X in a [mid + 1] to a [high];

Q152. Define graph, adjacency matrix, adjacency list, hash function, sparse matrix,

reachability matrix. (6)

 Ans.

 Graph

A graph G, consists of 2 sets V & E. V is a finite non-empty set of vertices. E is
a set of pairs of vertices, these pairs are called edges.

Adjacent Matrix:-

 Let G=(V,E) be graph with n vertices, n>=1.
The Adjacency Matrix of G is a 2- dimensional n*n array , say A, with the
property that A(i,j) = 1 iff the edge (vi,vj) (< vi, vj> for a directed graph) is in
E(G). A(i,j)= 0 if there is no such edge in G.
Adjacency Lists

In this representation the n rows of the adjacency matrix are represented as n
linked list. There is one list for each vertex in G. The nodes in list represents the
vertices that are adjacent from vertex i.

15

10 20

6
17 22

8

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 150

Hash Function

A hash function h is simply a mathematical formula that manipulates the key in
some form to compute the index for this key in the hash table In general, we say
that a hash function h maps the universe U of keys into the slots of a hash table
T[0….n-1]. This process of mapping keys to appropriate slots in a hash table is
known as hashing.

Sparse Matrix
A m x n matrix A is said to be sparse if most of its elements are zero. A matrix
that is not sparse is called dense matrix.
for example:

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Reachability Matrix /Path Matrix:-

Let G be a simple directed graph with m nodes, V1, V2, V3……..Vm. The reachability
matrix of G is the m –square matrix P=(Pij) defined as follows
Pij = 1 if there is a path from Vi to Vj
 0 otherwise

Q153. Explain various graph traversal schemes and write their merits and demerits.
 (8)

 Ans.

 Graph Traversal Scheme.

In many problems we wish to investigate all the vertices in a graph in some

systematic order. In graph we often do not have any one vertex singled out as

special and therefore the traversal may start at an arbitrary vertex. The two

famous methods for traversing are:-

a) Depth first traversal: of a graph is roughly analogous to pre-order traversal of

an ordered tree. Suppose that the traversal has just visited a vertex or, and let W0,

W1,……Wk be the vertices adjacent to V. Then we shall next visit W0 and keep

W1…..Wk waiting. After visiting W0 we traverse all the vertices to which it is

adjacent before returning to traverse W1, W2, ……..Wk.

b) Breadth first traversal: of a graph is roughly analogous to level by level

traversal of ordered tree. If the traversal has just visited a vertex V, then it next

visits all the vertices adjacent to V. Putting the vertices adjacent to these is a

waiting list to be traversed after all the vertices adjacent to V have been visited.

The figure below shows the order of visiting the vertices of one graph under both

DFS and BFS.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 151

 1 2 3

 9 5 4

 6 7 8

DFT = 1 2 3 4 5 6 7 8 9
 BFT= 1 2 9 3 5 6 4 7 8

Q154. Write short notes on the following:

(i) Decision and game trees.
(ii) Polynomial representation and manipulation using linked lists.
(iii) Analysis of algorithm.
(iv) Circular queues. (3 ½ x 4 = 14)

Ans.

 (i) Decision Tree and game Tree

Decision Tree

A decision tree is a diagram that represents conditions and actions sequentially
and thus shows which condition is to be considered first, second and so on. It is
also a method of showing the relationship of each condition and its permissible
actions. In the decision tree, the root of the tree is the starting point of the
decision sequence. The particular branch to be followed depends on the
conditions that exists and decisions to be made progressing along a particular
branch is the result of making a series of decisions. The node of a tree represent
conditions.
GAME TREES

An interesting application of trees is the playing of games such as tie-tac-toe,
chess, chess, etc.
We can picture the sequence of possible moves by mean of a game tree in which
the root denotes the initial situation and the branches from the root denote the
legal moves that the first player could make. At next level down, the branches
corresponds to the legal move by the second player in situation and so on ,with
branches from vertices at even levels denoting moves by the 1st player and from
vertices at odd levels denoting moves by he 2nd player.

 for example. Tic-tac-toe

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 152

 X O

X

 O

X O X X O X O X O X O

 X X X X X X X

 O O X O X O O

 2 2 2 2 1

 (ii) Circular Queues:-

A more efficient queue representation is obtained by regarding the array Q(1:n) as
circular. It becomes more convenient to declare the array as Q(O: n-1), when
rear = n-1, the next element is extended at Q(O) in the case that spot in free. Front
will always point one position counterclockwise from the first element in the queue.
Again, front = rear if and only if the queue is empty. Initially we have
front = rear = 1. In order to add an element it will be necessary to move rear one
position clockwise i.e.

If rear = n-1 then rear ← O

Else rear ← rear + 1

Using the modulo operator which completes remainder. This is first rear ← (rear +1)
mod n. Similarly, it will be necessary to move front one position clockwise each time

a deletion is made. This can be accomplished by front ← (front +1) mod n.

Q155. What is the smallest value of n such that an algorithm whose running time is

100n2 runs faster than an algorithm whose running time is 2n on the same
machine. (4)

Ans.

F (n) = 100 n2

G(n) = 2n
Value of n so that 100 n2 < 2n

The smallest value of n such that an algorithm whose running time is 100n2 runs
faster than an algorithm whose running time is 2n on the same machine is 15.

Q156. Explain any three methods of representing polynomials using arrays. Write
which method is most efficient for representing the following polynomials.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 153

8x100+10x+6
8x3-7x2+5x+15

Ans.

3 methods of representing polynomials using arrays are as follows
(1) if maximum value of exponent of a polynomial is m then define an array of
size m+1 and store coefficient in corresponding index position as exponent. Ex:
2x2 +1 is stored as

1 0 2

(2) 1 one-dimensional array is used to store exponent and coefficient
alternatively. Ex: 2x2 +1 is stored as

2 2 1 0

The size of array required is 2*n where n is the number of elements in
polynomial.
(3) Use 2 arrays or one-dimensional array of structures one for storing
exponents and other for co-efficient.
Ex: 2x2 +1 is stored as

2 2

1 0

The size of arrays is 2*n where n is the number of elements in polynomial.
(i) The second and third methods are the efficient methods.
For storing 8x100+10x+6 , as in method 1 there is a requirement of 101 integer
locations.
(ii) 8x3-7x2+5x+15 for this polynomial any one of the representations can be
used, but method 1 will be best as there is only coefficients need to be stored.
There are no gaps in the exponents, hence the entire array will be filled with the
coefficients.

Q157. Let X = (X1, X2, X3,….Xn) and Y= (Y1, Y2, Y3,….Xm) be two linked lists.
Write an algorithm to merge the lists together to obtain the linked list Z such that
Z = (X1, Y1, X2, Y2,….Xm, Ym,Xm+1….Xn) if m<=n or
Z = (X1, Y1,X2,Y2….Xn,Yn,Yn+1….Ym) if m>n. (7)

Ans.
void near (*head1,*head2,*head3)

{

 p1 = head1;

 p2 = head2;

 p3 = head3;

if (p1 != NULL)

{

 p3 = head3 = p1 ;

 p1=p1 next ;

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 154

}

while (p1!= NULL && p2 != NULL)

 {

 p3 next = p2 ;

 p2=p2 next;

 p3=p3 next;

 p3 next = p1;

 p1 = p1 next ;

 p3 = p3 next ;

}

for (; p1 != NULL; p1 = p1 �next)

{

 p3 next = p1;

 p3 = p3 next ;

}

for (; p2 != NULL ; p2 = p2  next)

 {

P2 next = p2 ;

p2 = p2 next ;

}

Q158. Devise a representation for a list where insertions and deletions can be made at

either end. Such a structure is called a Deque (Double ended queue). Write
functions for inserting and deleting at either end. (7)

Ans.

 There are various ways of representing dequeue in a computer. We will assume
that dequeue is maintained by a circular array DEQUE with pointer FRONT and
REAR, which point to the 2 ends of the dequeue. We assume that the element
extend from the left end to the right end in the array. The condition FRONT =
NULL will be used to indicate that dequeue is empty.
Algorithm for inserting in dequeue
Step 1: [check overflow condition]

 If rear ≥ n and front = 0
 Output :overflow and return”

Step 2: [check front pointer value]

 If front > 0

 Front = front –1

 Else

 Return

Step 3: [insert element at the front end]

 Q[front] = value

Step 4: [check rear pointer value]

 If rear < n

 Rear = rear +1

 Else

 Return

Step 5: [insert element at the rear end]

 Q [rear] = value

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 155

Step 6: Return

Deletion Algorithm for dequeue
Step 1: [check for underflow]

 If front = 0 and rear = 0

 Output “underflow” and return

Step 2: [delete element at front end]

 If front > 0

 Value = q [front]

 Return [value]

Step 3: [check queue for empty]

 If front = rear

 Front = rear = 0

 Else

 Front = front +1

Step 4: [delete element at the rear end]

 If rear > 0

 Value = Q [rear]

 Return (rear)

Step 5: [check queue for empty]

 If front = rear

 Front = rear = 0

 Else

 Rear = rear - 1

Step 6: Return

Q159. Using stacks, write an algorithm to determine whether the infix expression has

balanced parenthesis or not. (7)

Ans.

Algorithm parseparens

This algorithm reads a source program and parses it to make sure all opening –
closing parenthesis are paired
1. loop (more data)

read (character)

if (character is not a closing parenthesis)

pushstack (stack, character)

else

if (character is closing parenthesis)

popstack (stack, token)

while (token is not an opening paranthesis)

popstack (stack, token)

endwhile

end if

end if

end loop

 if (not emptystack (stack))

 print (Error: opening parenthesis not matched)

end parseparens.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 156

Q160. Implement a stack using linked list. Show both the PUSH and POP operations.
 (7)

 Ans.
 Stack implemantation using linked list

include<stdio.h>

include<malloc.h>

struct link

{

 int info ;

 struct link *next;

} *start;

struct link * push (struct link * rec)

{

 struct link *new_rec;

 printf (“\n Input the new value for next

location of the stack:”) ;

 new_rec = (struct link *) malloc (size of

(struct link)) ;

 scanf (“%d”, &new_rec->info) ;

 new_rec->next = rec;

 rec = new_rec;

 return (rec);

}

struct link * pop (struct link * rec)

{

 struct link * temp ;

 if (rec == NULL)

 {

 printf (‘\n Stack is empty”) ;

 }

 else

 {

 temp = rec; rec= temp->next;

printf(“the popped element %d”, temp->.info);

 free(temp) ;

 return(rec);

}

Q161. Write binary search algorithm and trace to search element 91 in following list:

13 30 62 73 81 88 91

 What are the limitations of Binary Search? (7)

Ans.
13 30 62 73 88 91
let us store the numbers in an array

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 157

13 30 62 73 88 91

0 1 2 3 4 5

To begin with we take low = 0 and high = 5
therefore mid = (low+high)/2 = (0+5) /2 = 2

since a[mid] = a[2] = 62 ≠ 91 and low < high we go to next iteration as 62 < 91

∴we take low = mid+1 = 3 and high =
now we find mid =(3+5)/2 = 4

∴a [mid] = a[4] = 88.
88 is not equal to 91
again 88< 91

∴ we take low = mid +1 = 4 + 1 = 5 and high = 5

∴mid = (5+5)/2 = 5

∴ a[mid] = a[5] = 91 which is the search element.
Limitation of Binary Search: -

(i) The complexity of Binary search is O(log2 n). the complexity is same
irrespective of the the position of the element, even if it is not present in the array.
(ii) The algorithm assumes that one has direct access to middle element in the list
on a sub list. This means that the list must be stored in some type of array.
Unfortunately inserting an element in an array requires element to be moved
down the list and deleting an element from an array requires element to be moved
up the list.
(iii) The list must be sorted.

Q162. What are the two phases in heap sort algorithm? Sort the following data
 using heap sort and show all the intermediate steps.
 88, 12, 91, 23, 10, 36, 45, 55, 15, 39, 81

Ans.

 The two phases of heapsort are : (1) Heap Creation (2) Sorting via deletion.
Sorting 88,12,91,23,10,36,45,55,15,39,8 using heap sort creating heap

 88,12,91,23,10, 36, 45,55,15,39

23

88

12
91

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 158

81:

12

23
88

91

10

36
45

23

55
88

10

36
45

12
15

39

23

55
88

91

39

36
45

12
15

81

10

55

91

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 159

Heap:

Delete 91

23

81
88

91

55

36
45

12
15

39

10

23

81
45

88

55

36
39

12
15

10

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 160

Delete 88

Delete 81

Delete 55

 36

23

55
45

81

10

36
39

12
15

15

23
45

55

10

36
39

12

15

23
39

45

10

12

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 161

Delete 45

Delete 39

Delete 36

Delete 23

Delete 15

12

15

23
36

39

10

15

23
12

36

10

15
12

23

10

10
12

15

12

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 162

Delete 12

Delete 10
List is 10,12,15,23,36,39,45,55,81,88,91.

Q163. What is a Binary Search Tree (BST)? Make a BST for the following sequence
of numbers.

 45, 32, 90, 21, 78, 65, 87, 132, 90, 96, 41, 74, 92 (7)

Ans.

 Binary search tree.

A binary search tree is a binary tree that is either empty or in which each node
contains a key that satisfies the following conditions: -
� All keys (if any) in the left sub tree of the root precede the key in the root.
� The key in the root precedes all keys (if any) in its right sub tree.
� The left and right sub trees of the root are again search trees.
The tree for the following list of numbers is
45 32 90 21 78 65 87 132 90 96 41 74 92

45

32 90

41 21
78

132

65
87

90

96

92

74

10

10

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 163

Q164. Traverse the Binary Search Tree created above in Preorder, Inorder and Postorder.
(7)

Ans.

Preorder: VLR
45 32 21 41 90 78 65 74 87 132 90 96 92
Inorder: LVR
21 32 41 45 65 74 78 87 90 90 92 96 132
PostOrder: LRV
21 41 32 74 65 87 78 92 96 90 132 90 45

Q165. What is a sparse matrix? How is it stored in the memory of a computer? Write a
function to find the transpose of a sparse matrix using this representation. (8)

Ans.

Sparse Matrix
A m x n matrix A is said to be sparse if most of its elements are zero. A matrix
that is not sparse is called dense matrix.
Representing Sparse Matrix in Memory Using Array

In array representation an array of triplets of type < row, col, element> is used to
store non-zero elements, where 1st field of the triplet is used to record row
position second to record column and the 3rd to record the non zero elements of
the sparse matrix.
In addition, we need to record the size of the matrix (ie number of rows and
number of columns)and non zero elements of array of triplets is used for this
purpose where the 1st filed stores the number of rows and the 2nd field stores the
number of columns and the third field stores the number of non zero elements.
The remaining elements of the array stores matrix on row major order. The array
representation will use
[2 * (n+1) * size of (int) + n*size of(T)] bytes of memory where n is the number
of non-zero elements and T is the data type of element.
Ex: consider a 5*6 sparse matrix below

0 0 0 2 0 0
0 0 1 0 0 5
0 4 0 0 0 0
0 0 0 0 0 0
0 0 0 0 7 0

 Array Representation of Sparse Matrix

5 6 5
1 4 2
2 3 1
2 6 5
3 2 4
5 5 7

here n = 5 but size of array is 6 as first row stores the order of array along with
number non-zero elements.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 164

Memory declaration will be
define Max 50

struct triplet

{ int row;

 int col;

 float element;

}

struct triplet sparse_mat [MAX];

sparse matrix represented as above

[n is the number of non zero elements in array]

for I= 1,2,…n+1

temp = a[I].row

a[I].row= a[I].col

a[I].col = temp

endfor.

Q166. Write an algorithm for finding solution to the Towers of Hanoi problem. Explain
the working of your algorithm (with 4 disks) with diagrams.
 (7)

Ans.
 Algorithm for Tower of Hanoi

TOWER (N, BEG, AUX, END)

This procedure gives a recruitment solution to the

tower of Hanoi problem for N discuss:-

1. If N = 1 then

(a) Write BEG → END

(b) Return

[end of if structure]

2. {move N-1 disks from peg BEG to peg AUX]

call TOWER (N-1, BEG, END, AUX)

3. Write : BEG →END

4. [Move N-1 disks from peg AUX to peg END]

Call Tower (N-1, AUX, BEG, END)

5. Return

X Y Z

In the beginning let X= BEG Y=AUX and Z= END

4

3

2

1

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 165

 X Y Z

 Move from X to Y

 X Y Z
 Move from X to Z

 X Y Z

 Move from Y to Z

4

3

2

1

4

3

2
1

4

3

2

1

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 166

 X Y Z

 Move from X to Y

 X Y Z

Move from Z to X

 X Y Z

Move from Z to Y

 X Y Z

2

4 3 2

1

4 3 2

1

4 3

2 1

4 3

1

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 167

Move from X to Y

 X Y Z

Move from X to Z

 X Y Z
Move from Y to Z

 X Y Z
Move from Y to X

4 3

2

1

4 3

2 1

4 32

1

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 168

 X Y Z

Move from Z to X

 X Y Z

Move from Y to Z

 X Y Z

4 32

1

4

3

2

1

4

3

2 1

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 169

Move from X to Y

 X Y Z

Move from X to Z

 X Y Z
Move from Y to Z

Q167. Suppose we have divided n elements in to m sorted lists. Explain how to
produce a single sorted list of all n elements in time O (n log m)? (7)

Ans.

 The list can be produced using Merge sort. Following is the procedure for it.
Suppose A is a sorted list with r elements and B is a sorted list with s elements.
The operation that combines the elements of A and B into a single sorted list C
with n = r +s elements is called merging.
Procedure 1

 MERGING(A, R, B, S, C)

Let A and B be sorted arrays with R and S elements, respectively. This
algorithm merges A and B into an array C with N= R + S elements.
1. [Initialize.] Set NA := 1, NB := 1 and PTR := 1.

2. [Compare.] Repeat while NA <=�R and NB <=�S :

 If A[NA] < B[NB], then ;

(a) [Assign element from A to C.] Set C[PTR] :=

A[NA].

(b) [Update pointers.] Set PTR := PTR + 1 and

NA := NA + 1.

Else:

4

3

2

1

4

3

2

1

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 170

(a) [Assign element from B to C.] Set C[PTR]

:= B[NB].

(b) [Update pointers.] Set PTR := PTR + 1 and

NB := NB + 1.

 [End of If structure.]

 [End of loop.]

3. [Assign remaining elements to C.]

If NA > R, then:

 Repeat for K = 0, 1, 2,…,S-NB:

 Set C[PTR + K] := B[NB + K].

 [End of loop.]

Else:

 Repeat for K = 0, 1, 2, …, R – NA:

 Set C[PTR + K] := A[NA + K].

 [End of loop.]

[End of If structure.]

4. Exit.

Procedure 2:
MERGE(A, R, LBA, S, LBB, C, LBC)

 This procedure merges the sorted arrays A

and B into the array C.

1. Set NA := LBA, NB := LBB, PTR := LBC, UBA:= LBA

 + R – 1, UBB := LBB + S – 1.

2. call merging (A,UBA,B,UBB,C)

3. Return.

Procedure 3:
MERGEPASS(A, N, L, B)

The N-element array A is composed of sorted subarrays where each
subarray has L elements except possibly the last subarray, which may have
fewer than L elements. The procedure merges the pairs of subarrays of A
and assigns them to the array B.
1. Set Q := INT(N/(2*L)), S:= 2*L*Q and R := N

 – S.

2. [Use procedure2 to merge the Q pairs of

subarrays.]

Repeat for J = 1, 2, . . ., Q:

(a) Set LB := 1 + (2*J – 2) * L. [Finds lower

bound of first array.]

(b) Call MERGE(A, L, LB, A, L, LB + L, B,

LB).

 [End of loop.]

3. [Only one subarray left ?]

If R  L, then:

 Repeat for J = 1, 2, . . ., R:

 Set B(S + J) := A(S+J).

 [End of loop.]

Else :

CALL MERGE(A, L, S + 1, A, R, L + S + 1, B, S

+ 1).

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 171

 [End of If structure.]

4. Return.

Procedure 4 MERGESORT(A, N)

This algorithm sorts the Nth element array A using  an auxiliary array B.
1. Set L:=1 . [Initiliazes the number of

 elements in the subarrays.]

2. Repeat Steps 3 to 6 while L<N:

3. Call MERGEPASS(A,N,L,B)

4. Call MERGEPASS(B,N,2*L,A).

5. Set L:= 4*L.

 [End of Step 2 loop].

6. Exit.

Q168. Define hashing. Describe any two commonly used hash functions. Describe one

method of collision resolution. (7)

Ans.
 A hash table is a data structure in which the location of a data item is determined

directly as a function of data item itself rather than by a sequence of comparison.
Under ideal condition, the time required to locate a data item in a hash table is
0(1) ie. it is constant and documents not depend on the number of data items
stored.
When the set of K of keys stored is much smaller then the universe U of all
possible keys, a hash table require much less storage spare than a direct address
table.
Hash Function

A hash function h is simply a mathematical formula that manipulates the key in
some form to compute the index for this key in the hash table. Eg a hash function
can divide the key by some number, usually the size of the hash table and return
remainder as the index for the key. In general, we say that a hash function h maps
the universe U of keys into the slots of a hash table T[0….n-1]. This process of
mapping keys to appropriate slots in a hash table is known as hashing.

Some of methods of hashing are:-
a) Division method
b) Multiplication method
c) Midsquare method
d) Folding method

(a) Division Method:- In this method, key K to be mapped into one of the m
states in the hash table is divided by m state in the hash table is divided by m and
the remainder of this division taken as index into the hash table. That is the hash
function is

 h(k) = k mod m
 where mod is the modules operations.
 (b) Multiplication Method: The multiplication method operates in 2 steps. In

the 1st step the key value K is multiplied by a constant A in the range O<A<1 and
the fractional part of the value obtained above is multiplied by m and the floor of
the result is taken as the hash values. That is the hash function is

 h(k) = [m (K A mod 1)]

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 172

Methods of Collision Resolution

1) Collision Resolution by separate chaining
2) Collision Resolution by open addressing

1) In this scheme all elements whose key hash to same hash table slot are put
in a linked list. Thus the slot in the hash table contains a pointer to the head of the
linked list of all the elements that hash to value i. If there is no such element that
hash to value I , the slot I contains NULL value (pictures as X)

Q169. A Binary tree has 9 nodes. The inorder and preorder traversals of the tree
yields the following sequence of nodes:
Inorder : E A C K F H D B G
Preorder: F A E K C D H G B

 Draw the tree. Explain your algorithm. (7)

Ans.

 Inorder: E A C K F H D B G
Preorder: F A E K C D H G B

The tree T is drawn from its root downward as follows.
a) The root T is obtained by choosing the first node in its preorder. Thus F is

the root of T.

b) The left child of the node F is obtained as follows. First use the inorder of

T to find the nodes the in the left subtree T1 of F. Thus T1 consists of the nodes

E, A, C and K. Then the left child of F is obtained by choosing the first node in

the preorder of T1 (which appears in the preorder of T). Thus A is the left son of

F.

U(Universe of keys)

K K1
(actual keys)K4
 k7 k2
k6 k5 k3

X

X
X

X
X

X
X

K1 X

K2 K4 K7 X

K6 X

K3 K5 X

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 173

c) Similarly, the right subtree T2 of F consists of the nodes H, D, B and G,

and D is the root of T2, that is, D is the right child of F.

Repeating the above process with each new node, we finally obtain the required

tree.

Q170. What are B-trees? Construct a B-Tree of order 3 for the following set of
 Input data:

 69, 19, 43, 16, 25, 40, 132, 100, 145, 7, 15, 18 (7)

 Ans.

 B- Tree

 A B-tree of order m is an m-way true in which
1) All leaves are on the same level
2) All internal nodes except the root have at most m-1(non-empty) children and at

least [m/2] (non empty children)
3) The number of keys in each internal node is one less than the number of its

children and these keys partition the keys in the children in the fashion of a
search tree.

4) The root has at most m children, but may have as few as 2 if it is not a leaf, or
none if the tree consists of the root alone.

69 19 43 16 25 40 132 100 145 7 15 18

 69,19 :

 43:

16:

 19 69

 43

 69 19

 43

 69 19 16

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 174

25:

40:

132:

100:

145:

7:

15:

 43

 69

 19

 16 25

 43

 69

 19

 16
 25 40

 43

 69

 19

 16 25 40 132

 43

 100 19

 16 25 40 69 132

 43

 100 19

 16 25 40 69 132

 43

 100 19

 16 25 40 69 132 145 7

 43

 100 19

 16 25 40 69 132 145 7

 15

145

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 175

18:

Q171. What is the difference between Prims algorithm and Kruskals algorithm for
finding the minimum-spanning tree of a graph? Execute both Prim’s and
Kruskal’s algorithms on the following graph. (8)

Ans.

 Difference Between Prism’s and Kruskal’s Algorithm

In Kruskal’s algorithm, the set A is a forest. The safe edge added to A is always

a least-weight edge in the paragraph that connects two distinct components. In

Prim’s algorithm, the set A forms a single tree. The safe edge added to A is

always a least-weight edge connecting the tree to a vertex not in the tree.

A 4 E
 2
 3 D

B

1

 8
C F

 3
 7
 G
 H

 43

 100 19

 16 25 40 69 132 145 7

 15

 18

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 176

Let us assume distance between H and G to be 0 since distance between them is
not given.

Using Kruskal’s Method

Edge(u,v) Weight Included

(A,D) 4 √

(A,B) 3 √

(D,E) 2 √

(B,C) 1 √

(C,F) 8 X

(C,H) 7 √

(H,G) 0 √

(F,H) 3 √

(B,D) 5 X

The minimum spanning tree is:-

A E

 D

B

 C F

 G

 H

min cost = 2+4+3+1+7+0+3 = 20 units.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 177

Using Prim’s Algorithm

Step 1, 2, 3 are

 A B C D E F G H

A _ 3 ∝ 4 ∝ ∝ ∝ ∝

B 3 _ 1 5 ∝ ∝ ∝ ∝

C ∝ 1 _ ∝ ∝ 8 ∝ 7

D 4 5 ∝ _ 2 ∝ ∝ ∝

E ∝ ∝ ∝ 2 _ ∝ ∝ ∝

F ∝ ∝ 8 ∝ ∝ _ 3 ∝

G ∝ ∝ ∝ ∝ ∝ 3 _ 0

H ∝ ∝ 7 ∝ ∝ ∝ 0 _

Step 4
Start with 1 and pick the smallest entry in row 1 which is (A,B)

 A
 3
 B

 A B C D E F G H

A _ 3 ∝ 4 ∝ ∝ ∝ ∝

B 3 _ 1 5 ∝ ∝ ∝ ∝

Now select vertex C and edge (B, C)
 A

 3

 B

 1
 C

 A B C D E F G H

A _ 3 ∝ 4 ∝ ∝ ∝ ∝

B 3 _ 1 5 ∝ ∝ ∝ ∝

C ∝ 1 _ ∝ ∝ 8 ∝ 7

Now Select (C, H) edge

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 178

 A

 3

 B

 1

 C

7

 H

 A B C D E F G H

A _ 3 ∝ 4 ∝ ∝ ∝ ∝

B 3 _ 1 5 ∝ ∝ ∝ ∝

C ∝ 1 _ ∝ ∝ 8 ∝ 7

H ∝ ∝ 7 ∝ ∝ ∝ 0 _

Now select edge (H, G)

A

 B

 C

 G
 H

Now select the edge (G,F)

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 179

 A B C D E F G H

A _ 3 ∝ 4 ∝ ∝ ∝ ∝

B 3 _ 1 5 ∝ ∝ ∝ ∝

C ∝ 1 _ ∝ ∝ 8 ∝ 7

H ∝ ∝ 7 ∝ ∝ ∝ 0 _

G ∝ ∝ ∝ ∝ ∝ 3 _ 0

 A

 B

 C
 F

 G
 H

 A B C D E F G H

 A _ 3 ∝ 4 ∝ ∝ ∝ ∝

B 3 _ 1 5 ∝ ∝ ∝ ∝

C ∝ 1 _ ∝ ∝ 8 ∝ 7

H ∝ ∝ 7 ∝ ∝ ∝ 0 _

G ∝ ∝ ∝ ∝ ∝ 3 _ 0

F ∝ ∝ 8 ∝ ∝ _ 3 ∝

We cannot consider edge (F, C) as it will make a cycle. so we consider the edge AD.

 A B C D E F G H

 A _ 3 ∝ 4 ∝ ∝ ∝ ∝

B 3 _ 1 5 ∝ ∝ ∝ ∝

C ∝ 1 _ ∝ ∝ 8 ∝ 7

H ∝ ∝ 7 ∝ ∝ ∝ 0 _

G ∝ ∝ ∝ ∝ ∝ 3 _ 0

F ∝ ∝ 8 ∝ ∝ _ 3 ∝

D 4 5 ∝ _ 2 ∝ ∝ ∝

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 180

 A
 D

 B

 C F

 G

 H

Now select the edge (D, E)

 A B C D E F G H

 A _ 3 ∝ 4 ∝ ∝ ∝ ∝

B 3 _ 1 5 ∝ ∝ ∝ ∝

C ∝ 1 _ ∝ ∝ 8 ∝ 7

H ∝ ∝ 7 ∝ ∝ ∝ 0 _

G ∝ ∝ ∝ ∝ ∝ 3 _ 0

F ∝ ∝ 8 ∝ ∝ _ 3 ∝

D 4 5 ∝ _ 2 ∝ ∝ ∝

E ∝ ∝ ∝ 2 _ ∝ ∝ ∝

Our spanning tree is now
 E
 A 2
 4 D

 3

 B

 1

 C
 F
 3
 7
 G
 H 0

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 181

Min cost = 2+4+3+1+7+0+3= 20 units

Q172. Show the result of running BFS on a complete Binary Tree of depth 3. Show the
status of the data-structure used at each stage. (6)

Ans.
 Complete Binary Tree of Depth 3

 Height=
depth =
3

BFS uses a queue data structure.

Delete A from queue and add to the queue nodes adjacent to it i.e. B, C

Delete node B from queue and add nodes adjacent to B i.e Q

Delete node C from queue and add nodes adjacent to C i.e F,G

Delete node D from queue and add nodes adjacent to D i.e H, I

Delete node E from queue and add nodes adjacent to E i.e J, K

Delete node F from queue and add nodes adjacent to F i.e L, M

A

C B

E F G D

H I J K L M N O

A

B C

C D E

D E F G

E F G H I

F G H I J K

G H I J K L M

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 182

Delete node G from queue and add nodes adjacent to G i.e N, O

Delete node H from queue. Since no nodes are adjacent to H no more nodes will be added
to the queue.

Therefore the nodes visited till now are
A B C D E F G H
The queue after deletion of H is

The queue after deletion of I is

The queue after deletion of J is

The queue after deletion of K is

The queue after deletion of L is

The queue after deletion of M is

The queue after deletion of N is

The queue after deletion of O is

Hence the BFS traversal of tree yields the result..
A B C D E F G H I J K L M N O

Q173. Write an algorithm to test whether a Binary Tree is a Binary Search Tree. (4)

H I J K L M N O

H I J K L M N O

I J K L M N O

J K L M N O

K L M N O

L M N O

M N O

N O

O

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 183

Ans.

 The algorithm to test whether a Binary tree is as Binary Search tree is as
follows:

bstree(*tree)

{

while((tree->left !=null)&& (tree->right !=null))

 {

 if(tree->left < tree->root)

 bstree(tree->left);

 else

 return(1);

 if(tree->right > tree->root)

 bstree(tree->right);

 else

 return(1);

 }

 return(0);

}

Q174. Define a linked list with a loop as a linked list in which the tail element points
to one of the list’s elements and not to NULL. Assume that you are given a
linked list L, and two pointers P1, P2 to the head. Write an algorithm that
decides whether the list has a loop without modifying the original list. The
algorithm should run in time O(n) and additional memory O(1), where n is the
number of elements in the list. (10)

 Ans
 struct node

 {

 int info;

 int node_count;

 struct node *next;

 }*P1, *P2;

 Let the given linked list L at some stage is:

 P1 P2

 Every node in list contains its position from head, i.e. 1,2,3…. In its node_count

field. The following algorithm tests whether the list has a loop in it or not.
 void test_loop()

 {

 struct node *temp;

 P2 = P1 -> next;

 if(P1 == P2) {

 printf(“There exists a loop in list”);

 return; }

 temp = P2->next;

 while(P2->node_count < temp->node_count) {

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 184

 P2 = P2->next;

 temp = P2->next; }

 printf(“Loop is from %d to %d”, P2->node_count,

temp->node_count);

}

Q175. Execute quick algorithm on the following data till two key values are placed in
their position 12,34,45,15,4,11,7,8,5,14,35,89,43,21. (8)

Ans:

The given data is:- 12,34,45,15,4,11,7,8,5,14,35,89,43,21

 Pass 1:-

 d u
 12 34 45 15 4 11 7 8 5 14 35 89 43 21
 d u
 12 34 45 15 4 11 7 8 5 14 35 89 43 21
 swap x[down] and x[up]
 d u

 12 5 45 15 4 11 7 8 34 14 35 89 43 21
 d u
 12 5 45 15 4 11 7 8 34 14 35 89 43 21
swap x[down] and x[up]
 d u
 12 5 8 15 4 11 7 45 34 14 35 89 43 21
 d u
 12 5 8 15 4 11 7 45 34 14 35 89 43 21
swap x[down] and x[up]
 du
 12 5 8 7 4 11 15 45 34 14 35 89 43 21
 u d
 12 5 8 7 4 11 15 45 34 14 35 89 43 21
swap x[up] and a
 u d
(11 5 8 7 4) 12 (15 45 34 14 35 89 43 21)

Pass 2:-

 d u
(11 5 8 7 4) 12 (15 45 34 14 35 89 43 21)
 d u
(11 5 8 7 4) 12 (15 45 34 14 35 89 43 21)
swap a and x[up]
 d u
 (4 5 8 7 11) 12 (15 45 34 14 35 89 43 21)
swap a and x[up]
 d u
4 5 7 8 11 12 (15 45 34 14 35 89 43 21)
Thus , two key values i.e. , 11 and 12 are now placed in their right positions.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 185

Similarly sort 2nd array also, such that we get after few steps as a sorted list
4 5 7 8 11 12 14 15 21 34 35 43 45 89

Q 176 Sort the following array of elements using quick sort {3 1 4 1 5 9 2

6 5 3 5 8} (8)

Ans
The given data is :-

3 1 4 1 5 9 2 6 5 3 5 8

Pass 1:-

a=x[lb]=3
d u
3 1 4 1 5 9 2 6 5 3 5 8
 d u
3 1 4 1 5 9 2 6 5 3 5 8
swap x[down] and x[up]
 d u
3 1 3 1 5 9 2 6 5 4 5 8
 d u
3 1 3 1 5 9 2 6 5 4 5 8
swap x[down] and x[up]
 d u
3 1 3 1 2 9 5 6 5 4 5 8
 u d
3 1 3 1 2 9 5 6 5 4 5 8
swap a and x[up]
 (2 1 3 1) 3 (9 5 6 5 4 5 8)

Pass 2:-

(1 1) 2 (3) 3 (9 5 6 5 4 5 8)

Pass 3:-

(1) 1 2 (3) 3 (9 5 6 5 4 5 8)

Pass 4:-

1 1 2 (3) 3 (5 6 5 4 5 8) 9

Pass 5:-

1 1 2 3 3 (5 6 5 4 5 8) 9

Pass 6:-

1 1 2 3 3 (4 5 5) 5 (6 8) 9

Pass 7:-

1 1 2 3 3 4 (5 5) 5 (6 8) 9

Pass 8:-

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 186

1 1 2 3 3 4 (5) 5 5 (6 8) 9

Pass 9:-

1 1 2 3 3 4 5 5 5 (6 8) 9

Pass 10:-

1 1 2 3 3 4 5 5 5 (6 8) 9
Pass 11:-

1 1 2 3 3 4 5 5 5 6 (8) 9

Pass 12:-

 1 1 2 3 3 4 5 5 5 6 8 9.

Q.177 Execute your algorithm for two passes using the following list as input:
 66, 33, 40, 20, 50, 88, 60, 11, 77, 30, 45, 65
 Describe the behaviour of Quick sort when the input is already sorted. (10)

Ans:
The given data is as follows:-66, 33, 40, 20, 50, 88, 60, 11, 77, 30, 45, 65

Pass 1:-

66 33 40 20 50 88 60 11 77 30 45 65
 a=x[lb]=66
d� u
66 33 40 20 50 88 60 11 77 30 45 65
 d u
66 33 40 20 50 88 60 11 77 30 45 65
 d u
66 33 40 20 50 88 60 11 77 30 45 65
swap x[down] and x[up]
 d u
66 33 40 20 50 65 60 11 77 30 45 88
 d u
66 33 40 20 50 65 60 11 77 30 45 88
swap x[down] and x[up] d u
66 33 40 20 50 65 60 11 45 30 77 88
u d
66 33 40 20 50 65 60 11 45 30 77 88
swap a and x[up]
 u d
(30 33 40 20 50 65 60 11 45) 66 (77 88)
End of pass 1.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC08 DATA STRUCTURES

 187

Pass 2:-

Taking the left partition:-

a=x[lb]=30

(30 33 40 20 50 65 60 11 45) 66 (77 88)
d u
(30 33 40 20 50 65 60 11 45) 66 (77 88)

d u
 (30 33 40 20 50 65 60 11 45) 66 (77 88)

d u

 (30 33 40 20 50 65 60 11 45) 66 (77 88)
swap x[down] and x[up];

d u
(30 11 40 20 50 65 60 33 45) 66 (77 88)

 d u
(30 11 40 20 50 65 60 33 45) 66 (77 88)
swap x[down] and x[up];

 d u
(30 11 20 40 50 65 60 33 45) 66 (77 88)

 u d
(30 11 20 40 50 65 60 33 45) 66 (77 88)

 swap a and x[up];
(20 11) 30 (40 50 65 60 33 45) 66 (77 88)
End of pass 2.

When the array will be already sorted:-In the beginning itself a condition is set
that

if(lower_bound >= upperbound)

 return;

therefore, once the partition function is executed, the value of down shall
increment only once and the value up shall decrement till it becomes zero as all
the elements in its way shall be greater than pivot(array being sorted in ascending
order.). Thus it will return the value in j= up as zero.
Now, again recursively when the program is called and upperbound is passed the
value as j-1 which is equal to -1. Thus the condition now checked will terminate
the program without going inside the partition function.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

