Q. $1 \quad$ a. Solve the recurrence relation $T(n)=27 T(n / 3)+\Theta\left(n^{3} \lg n\right)$

Answer:

$n^{\log _{3}}{ }^{27}=n^{3}$ vs. $n^{3} \lg n$
Therefore $T(n)=O\left(n^{3} \lg _{2} n\right)$
b. Given the following code fragment, what is its Big-O running time?

$$
\begin{aligned}
& \mathrm{i}=\mathrm{n} ; \\
& \text { while } \mathrm{i}>0 \\
& \mathrm{k}=\mathrm{k}+2 \text {; } \\
& \mathrm{i}=\mathrm{i} / 2 ;
\end{aligned}
$$

Answer:

$\mathrm{O}(\log n)$
c. Show the ordering of vertices produced by topological sort in the following graph. What is time complexity of topological sort?

Answer:

Topological sort - Order of vertices: V1, V2, V4, V3, V5 or V1, V2, V4, V5, V3 Time complexity: $\Theta(V+E)$
d. Given a sorted array and a value x. Suggest $O(n)$ algorithm to find two values in the array whose sum is equal to x.
Answer:
We keep two indexes one at start and 2nd one at end, and apply following algo. Let the array be sorted in descending order.

```
if(A[1st_index] + A[2nd_index] < x)
    2nd_index--;
else if (A[1st_index] + A[2nd_index] > x)
    1st_index++;
else
    print 1st_index,2nd_index;
do this until 2nd_index > 1st_index
```

e. Suppose that the root of the Red-Black tree is red. If we make it black, does the tree remain a Red Black tree?

Answer:

If we color the root of a relaxed red-black tree black but make no other changes, the resulting tree is a red-black tree. Not even any black-heights change.
f. What are the conditions for a problem to be solved using Dynam Programming.

Answer:

Optimal substructure and Overlapping sub problems

g. Explain intractable problem with an example.

Answer:

Some problems are intractable as they grow large; we are unable to solve them in reasonable time. e.g. subset-sum problem, TSP etc.

Q. 2

a. Give an efficient algorithm that determines whether or not a given directed graph $G=(V, E)$ contains a cycle. Discuss its time complexity.

Answer:

Function iscycle(G)
NV=0; // NV is number of vertices visited
select a vertex that has in degree zero
$\mathrm{NV}=\mathrm{NV}+1$
delete the vertex and all the edges emanating from it from the graph
if $N V \neq V[G]$ then return " cycle is there"
else return " no cycle is there"
Time complexity: In case of Adjacency Matrix $\mathrm{O}\left(\mathrm{V}^{2}\right)$. In case of Adjacency List $\mathrm{O}(\mathrm{V}+\mathrm{E})$.
b. Suppose we wish to search a linked list of length n, where each element contains a key k along with a hash value $h(k)$. Each key is a long character string. How might we take advantage of the hash values when searching the list for an element with a given key?
Answer:
Searching a list of length n where each element contains a long key k and a small hash value $h(k)$ can be optimized in the following way: Comparing the keys should be done first comparing the hash values and if successful then comparing the keys.
Q. 3 a. What is the difference between the binary-search tree property and the heap property? Can the heap property be used to print out the keys of an n-node tree in sorted order in $O(n)$ time? Explain how or why not.

Answer:

In a heap, a node's key is \geq both of its children's keys. In a binary search tree, a node's key is \geq its left child's key, but \leq its right child's key. The heap property, unlike the binary-searth-tree property, doesn't help print the nodes in sorted order because it doesn't tell which subtree of a node contains the element to print before that node. In a heap, the largest element smaller than the node could be in either subtree.

Note that if the heap property could be used to print the keys in sorted order in $O(n)$ tim we would have an $O(n)$-time algorithm for sorting, because building the heap takes only $O(n)$ time. But we know that a comparison sort must take $\Omega(n \lg n)$ time.
b. Consider a B-tree with degree \boldsymbol{m}. i.e. the number of children \boldsymbol{c}, of any internal node (except the root) is such that $m-1 \leq c \leq 2 m-1$. Derive the maximum and minimum number of records in the leaf nodes for such a B-tree with height $h(h \geq 1)$. (Assume that the root of a tree is at height 0).
Answer:
The root which is at height 0 can have minimum two children. Each of these children can have minimum of m children each of which can have a minimum of m children. Thus the minimum number of records in leaf nodes with height h is $2 \times m^{h-1}$.
Similarly the maximum number of records in leaf nodes with height h is $2(2 m-1)^{h-1}$.
Q. 5
a. Consider the problem of "Making Change". Coins available are:

- dollars (100 cents)
- quarters (25 cents)
- dimes (10 cents)
- nickels (5 cents)
- pennies (1 cent)

Design an algorithm using greedy approach to make a change of a given amount using the smallest possible number of coins.

Answer:

Informal Algorithm

- Start with nothing.
- at every stage without passing the given amount.
o add the largest to the coins already chosen.
Formal Algorithm
Make change for n units using the least possible number of coins.
MAKE-CHANGE (n)
$\mathrm{C} \leftarrow\{100,25,10,5,1\} \quad / /$ constant.
Sol $\leftarrow\} ; \quad / /$ set that will hold the solution set.
Sum $\leftarrow 0$ sum of item in solution set
WHILE sum not $=n$
$x=$ largest item in set C such that sum $+x \leq n$
IF no such item THEN
RETURN "No Solution"
$S \leftarrow S$ \{value of $x\}$
sum \leftarrow sum +x
RETURN S

b. Write a program to merge two arrays in sorted order, so that if an integer is in both the arrays it gets added into the final array only once.

Answer:

Algorithm Union(arr1[], arr2[]):

For union of two arrays, follow the following merge procedure.

1) Use two index variables i and j, initial values $i=0, j=0$
2) If arr1[i] is smaller than arr2[j] then print arr1[i] and increment i.
3) If arr1[i] is greater than arr2[j] then print arr2[j] and increment j.
4) If both are same then print any of them and increment both i and j.
5) Print remaining elements of the larger array.

Q. 6 a. How can the output of the Floyd-Warshall algorithm be used to detect the presence of a negative-weight cycle?

Answer:

Here are two ways to detect negative-weight cycles:
(a) Check the main-diagonal entries of the result matrix for a negative value. There is a negative weight cycle if and only if $d_{i i}{ }^{(n)}<0$ for some vertex i :

- $d_{i i}{ }^{(n)}$ is a path weight from i to itself; so if it is negative, there is a path from i to itself (i.e., a cycle), with negative weight.
- If there is a negative-weight cycle, consider the one with the fewest vertices.
- If it has just one vertex, then some $w_{i i}<0$, so $d_{i i}$ starts out negative, and since d values are never increased, it is also negative when the algorithm terminates.
- If it has at least two vertices, let k be the highest-numbered vertex in the cycle, and let i be some other vertex in the cycle. $d_{i k}{ }^{(k-1)}$ and $d_{k i}{ }^{(k-1)}$ have correct shortest-path weights, because they are not based on negative weight cycles. (Neither $d_{i k}{ }^{(k-1)}$ nor $d_{k i}{ }^{(k-1)}$ can include k as an intermediate vertex, and i and k are on the negative-weight cycle with the fewest vertices.) Since $i \rightarrow k$ $\rightarrow i$ is a negative-weight cycle, the sum of those two weights is negative, so $d_{i i}$ ${ }^{(k)}$ will be set to a negative value.
Since d values are never increased, it is also negative when the algorithm terminates.
In fact, it suffices to check whether $d_{i i}{ }^{(n-1)}<0$ for some vertex i. Here's why. A negative-weight cycle containing vertex i either contains vertex n or it does not. If it does not, then clearly $d_{i i}{ }^{(n-1)}<0$. If the negative-weight cycle contains vertex n, then consider $d_{n n}{ }^{(n-1)}$. This value must be negative, since the cycle, starting and ending at vertex n, does not include vertex n as an intermediate vertex.
(b) Alternatively, one could just run the normal FLOYD-WARSHALL algorithm one extra iteration to see if any of the d values change. If there are negative cycles, then some shortest-path cost will be cheaper. If there are no such cycles, then no d values will change because the algorithm gives the correct shortest paths.

Text Book

Introduction to algorithms- T.M. Cormen, C.E. Leiserson, R.L. Stein, MIT Press, $3^{\text {rd }}$ Edition, 2009

