Code: DE58 / DC58

Subject: LOGIC DESIG

ROLL NO

Diplete – Et/cs

Time: 3 Hours

JUNE 2013

ESIG Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following: (2×10)

a. In Boolean algebra a + ab = a is _____

(A) Involution Law	(B) De Morgan Law
(C) Absorption Law	(D) Idempotent Law

b. One of the following is equivalent to AND-OR realization is _____

(A) NAND-NOR realization	(B) NOR-NOR realization
(C) NOR-NAND realization	(D) NAND-NAND realization

c. The number of cells in a 4-variable K-map is _____

(A) 4	(B) 16
(C) 8	(D) 64

d. *J-K* flip-flop is made to toggle in one of the following condition _____

(A) $J = 0, K = 0$	(B) $J = 1, K = 0$
(C) $J = 0, K = 1$	(D) $J = 1, K = 1$

e. A shift register which can enter the data into it only one bit at a time, but has all data bits available as outputs is ______

(A) Serial In / Serial Out	(B) Serial In / Parallel Out
(C) Parallel In / Serial Out	(D) Parallel In / Parallel Out

DipIETE - ET/CS

Code: DE58 / DC58	Subject: LOGIC DESIG
f. The switching function decoder	ROLL NE Subject: LOGIC DESIG $f = \sum m(1,2,4,8,10,14)$ is implemented by using (B) 3 x 8
(A) 4 x 16 (C) 2 x 4	(B) 3 x 8 (D) 5 x 32
g. A Flip-Flop has two output	s which are
(A) always zero(C) always complementary	(B) always one(D) in one of the above status
h. Gray Code is:	
(A) non-weighted code(C) reflected code	(B) adjacent code differ by one bit(D) all of these
i. An example of canonical S	OP is
(A) $ABC + BC + AB$ (C) $ABC + AB$	(B) AB (D) $A\overline{B}C + AB\overline{C}$
j. The memory which can be reprogrammed is	programmed by the user and then cannot be erased and
(A) ROM(C) EPROM	(B) PROM (D) EEPROM

Q.2	a.	Perform the following conversions (i) $(7825.6875)_{10} = (?)_8$ (ii) $(A4F)_{16} = (?)_8$ (iii) $(3F2A)_{16} = (?)_2$ (iv) $(546)_8 = (?)_{16}$	(8)
	b.		and (8)
Q.3	a.	Implement two input EX-OR gate using minimum number of two input Negates only.	OR (4)
	b.	Simplify the Boolean function $f(w, x, y, z) = \sum (0,1,6,7,14,15) + \sum d(3,4,11,5)$ by using the don't care conditions "d" in (i) SOP Form (ii) POS Form	12)
			(8)

		Pour la Stille	
	(Code: DE58 / DC58 Subject: LOGIC DESIG	INTE
	c.	Find the simplified complemented expression for the fun $f(A, B, C) = ABC + AB\overline{C} + \overline{ABC} + \overline{ABC}$	ction (4) gram,
Q.4	a.	Explain the working of JK Flip Flop with the help of its logic dia characteristic equation, state table and excitation table.	gram, (8)
	b.	Describe the working of 4 bit Serial In Serial Out Shift Register using diagram and waveforms.	logic (8)
Q.5	a.	Represent $(275)_{10}$ and $(641)_{10}$ in BCD and then perform BCD addition. We the answer by converting back to decimal.	Verify (4)
	b.	Describe the working of a five bit parallel Binary adder circuit using adders.	g full (8)
	c.	Compute the following using 2's complement arithmetic (i) $-9-4$ (ii) $-4+9$	(4)
Q.6	a.	Explain the operation of a 4 bit Asynchronous Up Counter using JKFF, the help of logic diagram and waveforms.	with (8)
	b.	Design a MOD 5 Synchronous Counter using D Flip Flops.	(8)
Q.7	a.	Draw and explain the logic circuit and truth table for an Octal to B Encoder.	inary (8)
	b.	Design a 1 line to 8 line demultiplexer.	(8)
Q.8	a.	Distinguish between Serial in /Parallel out and Parallel in/Serial out registers.	shift (8)
	b.	Design a three bit serial in serial out shift register using JKFF.	(8)
Q.9	a.	Describe the timing diagrams for read cycle and write cycle for static RAM	М. (8)
	b.	Write a short note on the following:(i) Static memory device(ii) Dynamic memory device(iii) Access time(iv) External memory	(8)