DipIETE - ET/CS

Time: 3 Hours

JUNE 2013

please write your roll no. at the space provided on each page IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. In Boolean algebra $a+a b=a$ is \qquad
(A) Involution Law
(B) De Morgan Law
(C) Absorption Law
(D) Idempotent Law
b. One of the following is equivalent to AND-OR realization is \qquad
(A) NAND-NOR realization
(B) NOR-NOR realization
(C) NOR-NAND realization
(D) NAND-NAND realization
c. The number of cells in a 4-variable K-map is \qquad
(A) 4
(B) 16
(C) 8
(D) 64
d. J-K flip-flop is made to toggle in one of the following condition \qquad
(A) $J=0, K=0$
(B) $J=1, K=0$
(C) $J=0, K=1$
(D) $J=1, K=1$
e. A shift register which can enter the data into it only one bit at a time, but has all data bits available as outputs is \qquad
(A) Serial In / Serial Out
(B) Serial In / Parallel Out
(C) Parallel In / Serial Out
(D) Parallel In / Parallel Out
f. The switching function $\mathrm{f}=\sum \mathrm{m}(1,2,4,8,10,14)$ is implemented by usin
\qquad decoder
(A) 4×16
(B) 3×8
(C) 2×4
(D) 5×32
g. A Flip-Flop has two outputs which are \qquad
(A) always zero
(B) always one
(C) always complementary
(D) in one of the above status
h. Gray Code is:
(A) non-weighted code
(B) adjacent code differ by one bit
(C) reflected code
(D) all of these
i. An example of canonical SOP is \qquad
(A) $\mathrm{ABC}+\mathrm{BC}+\mathrm{AB}$
(B) $A B$
(C) $A B C+A B$
(D) $A \bar{B} C+A B \bar{C}$
j. The memory which can be programmed by the user and then cannot be erased and reprogrammed is \qquad
(A) ROM
(B) PROM
(C) EPROM
(D) EEPROM

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q. 2 a. Perform the following conversions
(i) $(7825.6875)_{10}=(?)_{8}$
(ii) $(\mathrm{A} 4 \mathrm{~F})_{16}=(\text { ? })_{8}$
(iii) $(3 \mathrm{~F} 2 \mathrm{~A})_{16}=(?)_{2}$
(iv) $(546)_{8}=(?)_{16}$
b. Compare Analog and Digital systems. Explain the advantages and disadvantages of digital systems over analog systems.
Q. 3 a. Implement two input EX-OR gate using minimum number of two input NOR gates only.
b. Simplify the Boolean function $\mathrm{f}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\sum(0,1,6,7,14,15)+\sum \mathrm{d}(3,4,11,12)$ by using the don't care conditions " d " in
(i) SOP Form
(ii) POS Form
c. Find the simplified complemented expression for the function $\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\mathrm{ABC}+\mathrm{AB} \overline{\mathrm{C}}+\overline{\mathrm{A}} \overline{\mathrm{B}} \mathrm{C}+\overline{\mathrm{A}} \mathrm{BC}$
(4)
Q. 4 a. Explain the working of JK Flip Flop with the help of its logic diagram, characteristic equation, state table and excitation table.
b. Describe the working of 4 bit Serial In Serial Out Shift Register using logic diagram and waveforms.
(8)
Q. 5 a. Represent (275) ${ }_{10}$ and (641) $)_{10}$ in BCD and then perform BCD addition. Verify the answer by converting back to decimal.
b. Describe the working of a five bit parallel Binary adder circuit using full adders.
c. Compute the following using 2's complement arithmetic
(i) $-9-4$
(ii) $-4+9$
Q. 6 a. Explain the operation of a 4 bit Asynchronous Up Counter using JKFF, with the help of logic diagram and waveforms.
b. Design a MOD 5 Synchronous Counter using D Flip Flops.
Q. 7 a. Draw and explain the logic circuit and truth table for an Octal to Binary Encoder.
b. Design a 1 line to 8 line demultiplexer.
Q. 8 a. Distinguish between Serial in /Parallel out and Parallel in/Serial out shift registers.
b. Design a three bit serial in serial out shift register using JKFF.
Q. 9 a. Describe the timing diagrams for read cycle and write cycle for static RAM.
b. Write a short note on the following:
(i) Static memory device
(iii) Access time
(ii) Dynamic memory device
(iv) External memory
(8)

