
DC54 DATA STRUCTURES JUNE 2013

© IETE 1

Q 2 (a) Define storage class and its functions. Explain in detail scope, storage
allocation and purpose of each storage class.

Answer
 'Storage' refers to the scope of a variable and memory allocated by compiler to store that
variable. Scope of a variable is the boundary within which a variable can be used. Storage
class defines the scope and lifetime of a variable.
From the point view of C compiler, a variable name identifies physical location from a
computer where variable is stored. There are two memory locations in a computer system
where variables are stored as: Memory and CPU Registers

Functions of storage class:

To determine the location of a variable where it is stored?

Set initial value of a variable or if not specified then setting it to default value.

Defining scope of a variable.

To determine the life of a variable.

Types of Storage Classes:

Storage classes are categorized in 4 (four) types as,

• Automatic Storage Class

• Register Storage Class

• Static Storage Class

• External Storage Class

Storage

type

Created Initialized Scope purpose

auto Each time the

function or block

is called

Can be initialised at

the time of

declaration

With in the

block or

function

As variable

with in a

block

static First time when

the function is

Initialised at the

time of declaration

With in the

block or

As variables

which retain

http://www.technoexam.com/c-language-lecture-study-notes-tutorials-material/automatic-storage-class.asp
http://www.technoexam.com/c-language-lecture-study-notes-tutorials-material/register-storage-class.asp
http://www.technoexam.com/c-language-lecture-study-notes-tutorials-material/static-storage-class.asp
http://www.technoexam.com/c-language-lecture-study-notes-tutorials-material/external-storage-class.asp
http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC54 DATA STRUCTURES JUNE 2013

© IETE 2

called function value even

after the

termination

of function.

register same as auto same as auto same as auto As most

frequently

used

variables

Extern created in the file

where it has been

declared as

global

initialised in the file

where it has been

declared as global

Both the files

where declared

as global and

where declared

as extern

as variables

used by

multiple

files.

Q2 (b) Differentiate between Static and Dynamic memory allocation

Answer
S.No. STATIC MEMORY ALLOCATION DYNAMIC MEMORY

ALLOCATION
1.

Memory is allocated before the execution of
the program begins.
(During Compilation)

Memory is allocated during the
execution of the program.

2.
No memory allocation or deallocation actions
are performed during Execution.

Memory Bindings are established
and destroyed during the Execution.

3.
Variables remain permanently allocated.

Allocated only when program unit
is active.

4.
Implemented using stacks and heaps.

Implemented using data segments.

5.
Pointer is needed to accessing variables.

No need of Dynamically allocated
pointers.

6.
Faster execution than Dynamic.

Slower execution than static.

7.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC54 DATA STRUCTURES JUNE 2013

© IETE 3

More memory Space required. Less Memory space required.

Q3 (a) Define and explain Self Referential Structures in detail. Give
suitable example.

 Answer
Self Referential Structures:
A structure may have a member whose is same as that of a structure itself. Such
structures are called self-referential. A self-referential structure is one which contains a
pointer to its own type. Self-Referential Structure are one of the most useful features.
They allow to create data structures that contains references to data of the same type as
themselves. e.g.

struct student
{
int roll;
float marks;
int subject;
struct student *ptr;
};
In the above example structure student has a pointer ptr which points to another student
structure.Self-referential Structures are used in the area of linear data structures such as
linked list, stack, Queue and non-linear data structures such as trees, graphs etc.

Example: Single linked list is implemented using following data structures

struct node {

int value;

struct node *next;

};

Q3 (b) How a union is different from a struture? Explain with an example.

Answer

Structure Union

i. Access Members

We can access all the members of Only one member of union can be accessed at

javascript:void(0);
javascript:void(0);
javascript:void(0);
http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC54 DATA STRUCTURES JUNE 2013

© IETE 4

structure at anytime. anytime.

ii. Memory Allocation

Memory is allocated for all variables.
Allocates memory for variable which variable

require more memory.

iii. Initialization

All members of structure can be

initialized

Only the first member of a union can be

initialized.

iv. Keyword

'struct' keyword is used to declare

structure.
'union' keyword is used to declare union.

v. Syntax

struct struct_name

{

 structure element 1;

 structure element 2;

 structure element n;

}struct_var_nm;

union union_name

{

 union element 1;

 union element 2;

 union element n;

}union_var_nm;

vi. Example

struct item_mst

{

union item_mst

{

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC54 DATA STRUCTURES JUNE 2013

© IETE 5

 int rno;

 char nm[50];

}it;

 int rno;

 char nm[50];

}it;

Q3 (c) List various file opening modes available in ‘C’.

Answer

Modes of opening a file:

Mode Purpose

“r” Open a file for reading. If file does not exist, NULL is returned.

“w” Open a file for writing. If the file does not exist a new file is

created. If the file exists, the new contents overwrite the previous

contents.

“r+” Open the file for both reading and writing. If file does not exist,

NULL is returned.

“w+” Open the file for both reading and writing. If file does not exist, the

new contents overwrites the previous contents

“a” Open a file for appending. If the file exists, the new data is written

at the end of the file else the new file is created.

“a+” Open the file for reading and appending. If the file does not exist, a

new file is created.

Q4 (a) Write an algorithm to search an element using Binary Search method.

Answer
Binary search:
BINARY(A,LB,UB,ITEM,LOC)

1. Set BEG:=LB,END=UB and MID=INT((BEG+END)/2)

2. Repeat steps 3 &4 while BEG<=END and DATA[MID]≠ ITEM

3. If ITEM < DATA[MID] then

Set END: =MID-1

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC54 DATA STRUCTURES JUNE 2013

© IETE 6

else

Set BEG: =MID+1

4. Set MID:=INT((BEG+END)/2)

5. if A[MID]=ITEM then

Set LOC: =MID

else

Set LOC: =NULL

6. Exit

A is a sorted array with lower bound LB and upper bound UB and ITEM is given item of
information. Variables BEG, END and MID denote respectively the beginning, end and
middle locations of a segment of elements of A.

Q.5 (a) Write a ‘C’ routine that describes various operations on stack.

Answer
PUSH & POP IN STACK
#include<stdio.h>
#include<conio.h>
struct
{
int a[5],top;
}q;
void main()
{
int z,i,t;
clrscr();
for (i=0;i<=5;i++)
{
scanf(“%d”,&t);
push(t);
}
for(i=1;i<=5;i++)
{
z=pop();
printf(“%d”,z);
}}
push(int t)
{
q.a[q.top]=t;
return(q.top++);

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC54 DATA STRUCTURES JUNE 2013

© IETE 7

}
pop()
{
q.top--;
return(q.a[q.top]);}

Q5 (b) what is the advantage of circular queue over linear queue? Write C routines
for inserting and deleting an element from the linear queue.

Answer
Circular queue have less memory consumption as compared to linear queue because
while doing insertion after deletion operation in a linear queue, it allocate an extra space
but in circular queue the first is used as it comes immediate after the last.

INSERT AND DELETE ITEMS IN A QUEUE

#include<stdio.h>
struct queue
{ int a[5],front,rear;
} q;
void main()
{
int z,i,t;
for(i=1;i<=5;i++)
{
scanf(“%d”,&t);
insert(t);
}
for(i=1;i<=5;i++)
{
z=delete();
printf(“%d”,z);
}
}
insert(int t)
{
q.a[q.front]=t;
q.front++;
}
delete()
{
int p;
p=q.a[q.rear];
q.rear++;
return(p);
}

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC54 DATA STRUCTURES JUNE 2013

© IETE 8

Q6 (a) Explain the a singly linked list? Write a C program for different operations
that can be performed on singly linked list.

6 a. Singly Linked List Singly linked list is the most basic linked data structure. In this
the elements can be placed anywhere in the heap memory unlike array which uses
contiguous locations. Nodes in a linked list are linked together using a next field, which
stores the address of the next node in the next field of the previous node i.e. each node of
the list refers to its successor and the last node contains the NULL reference. It has a
dynamic size, which can be determined only at run time.

Basic operations of a singly-linked list are:

Insert – Inserts a new element at the end of the list.
Delete – Deletes any node from the list.
Find – Finds any node in the list.
Print – Prints the list.

Functions

1. Insert – This function takes the start node and data to be inserted as arguments. New
node is inserted at the end so, iterate through the list till we encounter the last node.
Then, allocate memory for the new node and put data in it. Lastly, store the address in
the next field of the new node as NULL.

2. Delete - This function takes the start node (as pointer) and data to be deleted
as arguments. Firstly, go to the node for which the node next to it has to be deleted, If
that node points to NULL (i.e. pointer->next=NULL) then the element to be deleted is
not present in the list. Else, now pointer points to a node and the node next to it has to be
removed, declare a temporary node (temp) which points to the node which has to
be removed. Store the address of the node next to the temporary node in the next
field of the node pointer (pointer->next = temp->next). Thus, by breaking the link we
removed the node which is next to the pointer (which is also temp). Because we deleted
the node, we no longer require the memory used for it, free() will deallocate the memory.

3. Find - This function takes the start node (as pointer) and data value of the node (key)
to be found as arguments. First node is dummy node so, start with the second node.
Iterate through the entire linked list and search for the key. Until next field of the pointer
is equal to NULL, check if pointer->data = key. If it is then the key is found else, move
to the next node and search (pointer = pointer -> next). If key is not found return 0, else
return 1.

4. Print - function takes the start node (as pointer) as an argument. If pointer = NULL,
then there is no element in the list. Else, print the data value of the node (pointer->data)
and move to the next node by recursively calling the print function with pointer->next
sent as an argument.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC54 DATA STRUCTURES JUNE 2013

© IETE 9

Performance:

1. The advantage of a singly linked list is its ability to expand to accept virtually
unlimited number of nodes in a fragmented memory environment.
2. The disadvantage is its speed. Operations in a singly-linked list are slow as it
uses sequential search to locate a node.

Single Linked List - C Program source code
#include<stdio.h>
#include<stdlib.h>
typedef struct Node
{
 int data;
 struct Node *next;
}node;
void insert(node *pointer, int data)
{
 /* Iterate through the list till we encounter the last node.*/
 while(pointer->next!=NULL)
 {
 pointer = pointer -> next;
 }
 /* Allocate memory for the new node and put data in it.*/
 pointer->next = (node *)malloc(sizeof(node));
 pointer = pointer->next;
 pointer->data = data;
 pointer->next = NULL;
}
int find(node *pointer, int key)
{
 pointer = pointer -> next; //First node is dummy node.
 /* Iterate through the entire linked list and search for the key. */
 while(pointer!=NULL)
 {
 if(pointer->data == key) //key is found.
 {
 return 1;
 }
 pointer = pointer -> next;//Search in the next node.
 }
 /*Key is not found */
 return 0;
}

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC54 DATA STRUCTURES JUNE 2013

© IETE 10

void delete(node *pointer, int data)
{
 /* Go to the node for which the node next to it has to be deleted */
 while(pointer->next!=NULL && (pointer->next)->data != data)
 {
 pointer = pointer -> next;
 }
 if(pointer->next==NULL)
 {
 printf("Element %d is not present in the list\n",data);
 return;
 }
 /* Now pointer points to a node and the node next to it has to be removed */
node *temp;
 temp = pointer -> next;
 /*temp points to the node which has to be removed*/
 pointer->next = temp->next;
 /*We removed the node which is next to the pointer (which is also temp) */
 free(temp);
 /* Beacuse we deleted the node, we no longer require the memory used for it .
 free() will deallocate the memory.
 */
 return;
}
void print(node *pointer)
{
 if(pointer==NULL)
 {
 return;
 }
 printf("%d ",pointer->data);
 print(pointer->next);
}
int main()
{
 /* start always points to the first node of the linked list.
 temp is used to point to the last node of the linked list.*/
 node *start,*temp;
 start = (node *)malloc(sizeof(node));
 temp = start;
 temp -> next = NULL;
 /* Here in this code, we take the first node as a dummy node.
 The first node does not contain data, but it used because to avoid handling special
cases
 in insert and delete functions.
 */

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC54 DATA STRUCTURES JUNE 2013

© IETE 11

 printf("1. Insert\n");
 printf("2. Delete\n");
 printf("3. Print\n");
 printf("4. Find\n");
 while(1)
 {
 int query;
 scanf("%d",&query);
 if(query==1)
 {
 int data;
 scanf("%d",&data);
 insert(start,data);
 }
 else if(query==2)
 {
 int data;
 scanf("%d",&data);
 delete(start,data);
 }
 else if(query==3)
 {
 printf("The list is ");
 print(start->next);
 printf("\n");
 }
 else if(query==4)
 {
 int data;
 scanf("%d",&data);
 int status = find(start,data);
 if(status)
 {
 printf("Element Found\n");
 }
 else
 {
 printf("Element Not Found\n");

 }
 }
 }

Q6 (b) what is the main advantage and disadvantage of using Linked List over an
Array?

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC54 DATA STRUCTURES JUNE 2013

© IETE 12

Answer
The principal benefit of a linked list over a conventional array is that the list elements can
easily be inserted or removed without reallocation or reorganization of the entire structure
because the data items need not be stored contiguously in memory or on disk. Linked lists
allow insertion and removal of nodes at any point in the list, and can do so with a
constant number of operations if the link previous to the link being added or removed is
maintained during list traversal.

On the other hand, simple linked lists by themselves do not allow random access to the
data, or any form of efficient indexing. Thus, many basic operations — such as obtaining
the last node of the list (assuming that the last node is not maintained as separate node
reference in the list structure), or finding a node that contains a given datum, or locating
the place where a new node should be inserted — may require scanning most or all of the
list elements

Q7 (a) Define and explain doubly linked list. Write a ‘C’ routine to insert a node

after the specified node in a doubly linked list.

Answer

Doubly Linked List

Doubly-linked list is a more sophisticated form of linked list data structure. Each node of

the list contain two references (or links) – one to the previous node and other to the next

node. The previous link of the first node and the next link of the last node points to

NULL. In comparison to singly-linked list, doubly-linked list requires handling of more

pointers but less information is required as one can use the previous links to observe the

preceding element. It has a dynamic size, which can be determined only at run time.

Performance

1. The advantage of a doubly linked list is that we don’t need to keep track of the
previous node for traversal or no need of traversing the whole list for finding the previous
node.

2. The disadvantage is that more pointers needs to be handled and more links need
to updated

LPT

INFO RPT

http://en.wikipedia.org/wiki/Array_data_structure
http://en.wikipedia.org/wiki/Random_access
http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC54 DATA STRUCTURES JUNE 2013

© IETE 13

void insert_given_node()

{

struct node *ptr,*cpt;

int m;

ptr=(struct node *) malloc(size of (struct node));

if (ptr==NULL)

{

printf(“OVERFLOW”);

return;

}

printf(“Input new node information”);

scanf(“%d”,&ptr ->info);

printf(“Input node information after which insertion is to be done”);

scanf(“%d”,&m);

cpt=first;

while(cpt->info!=m)

cpt=cpt->rpt;

tpt=cpt->rpt;

cpt->rpt=ptr;

ptr->lpt=cpt;

ptr->rpt=tpt;

tpt->lpt=ptr;

printf(“\n Insertion is complete”);

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC54 DATA STRUCTURES JUNE 2013

© IETE 14

}

Q7 (b) Define and explain Binary Search Tree (BST). Write ‘C’ function for
counting the number of nodes in a BST.

Answer

Binary Search Tree In computer science, a binary search tree (BST) is a node based
binary tree data structure which has the following properties:

 The left subtree of a node contains only nodes with keys less than the node's key.
 The right subtree of a node contains only nodes with keys greater than the node's

key.
 Both the left and right subtrees must also be binary search trees.

From the above properties it naturally follows that:
 Each node (item in the tree) has a distinct key.

Generally, the information represented by each node is a record rather than a single data
element. However, for sequencing purposes, nodes are compared according to their keys
rather than any part of their their associated records.
The major advantage of binary search trees over other data structures is that the related
sorting algorithms and search algorithms such as in-order traversal can be very efficient.
Binary search trees are a fundamental data structure used to construct more abstract data
structures such as sets, multisets, and associative arrays.

 How to count number of nodes in a Binary Search Tree?

To count the number of nodes in a given binary search tree, the tree is required to be
traversed recursively until a leaf node is encountered. When a leaf node is
encountered, a count of 1 is returned to its previous activation (which is activation for
its parent), which takes the count returned from both the children’s activation, adds 1
to it, and returns this value to the activation of its parent. This way, when the
activation for the root of the binary search tree returns, it returns the count of the total
number of the nodes in the binary tree.

http://encrypt3d.wordpress.com/2010/09/25/what-is-binary-search-tree/
http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC54 DATA STRUCTURES JUNE 2013

© IETE 15

int count(struct tnode *p)

 {

 if(p==NULL)

 return(0);

 else

 if(p->lchild == NULL && p->rchild == NULL)

 return(1);

 else

 return(1 + (count(p->lchild) + count(p->rchild)));

}

Q 8 (a) Define and explain Graph Traversal. Describe in detail various Graph
Traversal Strategies with the help of example.

Answer
Graph Traversal
To traverse a graph is to process every node in the graph exactly once. Because there are

many paths leading from one node to another, the hardest part about traversing a graph is

making sure that you do not process some node twice. There are two general solutions to

this difficulty:

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC54 DATA STRUCTURES JUNE 2013

© IETE 16

1. When you first encounter a node, mark it as REACHED. When you visit a node,

check if it's marked REACHED; if it is, just ignore it. This is the method our

algorithms will use.

2. When you process a node, delete it from the graph. Deleting the node causes the

deletion of all the arcs that lead to the node, so it will be impossible to reach it

more than once.

At the heart of our traversal algorithm is a list of nodes that we have reached but

not yet processed. We will call this the READY list.

General Traversal Strategy

1. Mark all nodes in the graph as NOT REACHED.

2. pick a starting node. Mark it as REACHED and place it on the READY list.

3. pick a node on the READY list. Process it. Remove it from READY. Find all its

neighbours: those that are NOT REACHED should marked as REACHED and

added to READY.

4. repeat 3 until READY is empty.

Example:

• Step 1: A = B = C = D = NOT REACHED.
• Step 2: READY = {A}. A = REACHED.
• Step 3: Process A. READY = {B, C}. B = C = REACHED.
• Step 3: Process C. READY = {B, D}. D = REACHED.
• Step 3: Process B. READY = {D}.
• Step 3: Process D. READY = {}.

In fact this will traverse only a connected graph. To traverse a graph that might be
unconnected, whole procedure is repeated until all nodes are marked as REACHED.

There are two choice points in this algorithm: in step 2, how do we pick the initial
starting node, and in step 3 how do we pick a node from READY? The answer is, it

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

DC54 DATA STRUCTURES JUNE 2013

© IETE 17

depends on what you are trying to accomplish. If all you want to do is print out nodes, or
count them, or do any other processing that is order-independent, then any selection will
do. The two most common traversal patterns are breadth-first traversal and depth-first
traversal. In breadth-first traversal, READY is a QUEUE, not an arbitrary list. Nodes are
processed in the order they are reached (FIFO). This has the effect of processing nodes
according to their distance from the initial node. First, the initial node is processed. Then
all its neighbours are processed. Then all of the neighbours' neighbours etc.

In depth-first traversal, READY is a STACK; the most recently reached nodes are
processed before earlier nodes.

Let us compare the two traversal orders on the following graph:

Initial Steps: READY = [A]. Process A. READY = [B,E]. Process B.

It is at this point that two traversal strategies differ. Breadth-first adds B's neighbours to
the back of READY; depth-first adds them to the front:

Breadth First:

• READY = [E,C,G].
• process E. READY = [C,G,F].
• process C. READY = [G,F,D].
• process G. READY = [F,D,H].
• process F. READY = [D,H].
• process D. READY = [H].
• process H. READY = [].

Depth First:

• READY = [C,G,E].
• process C. READY = [D,G,E].
• process D. READY = [G,E].
• process G. READY = [H,F,E].
• process H. READY = [F,E].
• process F. READY = [E].

Text Book

C& Data Structures, P.S. Deshpande and O.G. Kakde, Dreamtech Press, 2007

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

	Types of Storage Classes:
	Storage classes are categorized in 4 (four) types as,
	Single Linked List - C Program source code
	Answer
	Binary Search Tree In computer science, a binary search tree (BST) is a node based binary tree data structure which has the following properties:
	How to count number of nodes in a Binary Search Tree?
	General Traversal Strategy

