Code: AE74

Subject: VLSI DESIGN

ROLL NO.

AMIETE – ET

Time: 3 Hours

JUNE 2013

Max. Marks:

KudentBounty.com PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

a. The material used for developing insulating layer between gate and substrate is

(A) Polysilicon	(B) Silicon dioxide
(C) Boron	(D) Arson

b. The polarity of NMOS depletion type FET gate voltage is

(A) Positive	(B) Negative
(C) Neutral	(D) Both positive & negative

c. The circular disc used for IC fabrication is named as

(A) Cylinder	(B) Plate
(C) Wafer	(D) CD

d. The nominal threshold voltage for NMOS enhancement type MOSFET is

(A) 0.3 VDD	(B) 0.1 VDD
(C) 0.4 VDD	(D) 0.2 VDD

e. Typical values of μ at room temperature are

(A) $ \begin{aligned} \mu_n &= 650 \text{cm}^2/\text{V} \text{ sec} \\ \mu_p &= 240 \text{cm}^2/\text{V} \text{ sec} \end{aligned} $	(B) $\frac{\mu_n = 65 \text{cm}^2/\text{V sec}}{\mu_p = 24 \text{cm}^2/\text{V sec}}$	
$\mu_p = 240 \text{cm}^2/\text{V} \text{sec}$	$\mu_p = 24 \text{ cm}^2/\text{V} \text{ sec}$	
$\mu_n = 1250 \text{ cm}^2/\text{V} \text{ sec}$	$\mu_n = 125 \text{ cm}^2/\text{V} \text{ sec}$	
(C) $\frac{\mu_n = 1250 \text{ cm}^2/\text{V sec}}{\mu_p = 480 \text{ cm}^2/\text{V sec}}$	(D) $\frac{\mu_n = 125 \text{ cm}^2/\text{V sec}}{\mu_p = 480 \text{ cm}^2/\text{V sec}}$	

			- Sector	
	C	ode: AE74	ROLL NO.	here
		In BiCMOS Inverters, the design ap	proach is to use	.00U.
		 (A) MOS - Logic BIPOLAR – Driving (C) MOS - Driving BIPOLAR – Logic 	ROLL NO. Subject: VLSI DESIGN proach is to use (B) MOS – Logic & Driving BIPOLAR - Switching (D) None of these	hty.com
	g.	Latch-up problem is negligible in	fabrication method	
		(A) Twin tub process(C) P-Well Process	(B) N-Well Process(D) None of these	
	h.	NMOS pass transistor has	voltage level degradation	
		 (A) Low level (C) Both (A) & (B) 	(B) High level(D) None of these	
	i.	R_{on} of NMOS Z_{pu} / Z_{pd} ratio of 8	8:1 is (Assume 5 micron techno	ology)
		 (A) 40 KΩ (C) 60 KΩ 	(B) 50 KΩ (D) 90 KΩ	
	j.	Optimization in Area, speed and postyle	ower can be achieved in o	lesign
		(A) Full custom(C) ASIC	(B) Semi custom(D) Gate array	
		Answer any FIVE Question Each question ca	-	
Q.2	a.	Write the basic structure of NMC mode indicating all layers.	OS transistor for enhancement and dep	letion (4)
	b.	. With neat sketch explain the NMOS n-well Fabrication process.		(8)
	c.	Compare CMOS technology with E	Bipolar technology.	(4)
Q.3	a.	Derive an expression for I_{ds} in terms and non – saturation.	ms of K, $\left(\underbrace{W_L} \right)$ ratio and V_{ds} in both satisfies	aturation (8)
	b.	With neat circuit diagrams explain circuits. Compare the merits and de	n the various form of pull up used in emerits of each.	MOS (8)
Q.4	a.	Write the circuit and stick diagram (i) two input CMOS NAND gate (ii) y = AB+CD	for	(8)

AE74 / JUNE - 2013

		ROLL NO.	13 (8) (4) 3λ in
	C	ode: AE74 Subject: VLSI DESIGN	720
	b.	Write the design rules of transistor, wires and contacts. Explain brief neat sketch	ly (8) 0411
Q.5	a.	Determine the total delay of NMOS and CMOS inverter pair.	(4)
	b.	Calculate the capacitance of a metal layer with $L = 20 \lambda$ and width = terms of standard unit of capacitance.	3λ in (4)
	c.	Derive an expression for total delay of N inverters (NfMOS) connect cascaded form to drive a large capacitive load.	cted in (8)
Q.6	a.	Explain briefly three different scaling models defined in VLSI design.	(6)
	b.	Draw schematic and stick diagram of an 2-input NOR-gate using CMO BiCMOS logic.	OS and (10)
Q.7	a.	Design an adder element that can be cascaded to form 'n' bit adder.	(6)
	b.	Write the circuit of Manchester carry chain element. Explain briefly with the requirement of buffering in cascaded Manchester carry chain circuit.	-
Q.8	a.	Write the circuit of three transistor dynamic RAM cell and explain brief and write functions.	ly read (10)
	b.	Write note on factors influencing choice of layer for wiring.	(6)
Q.9	a.	With an example explain sensitized path based testing used for comb logic circuit.	oination (8)
	h	Explain DPC Circuit Extractor and Simulator with example	(8)

b. Explain DRC, Circuit Extractor and Simulator with example. (8)

3