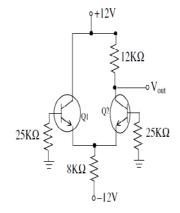
AE54/AC54/AT54


Q2 (a) Classify ICs on the basis of applications, devices used and chip complexity.

Answer Article 1.2 -1.3 of Text Book I

StudentBounty.com Q2 (b) In the differential amplifier circuit shown below, the transistors have identical characteristics and their $\beta = 100$. Determine the (i) Output voltage (ii) The base currents and

> (iii) The base voltages taking into account the effect of the R_B and V_{BE} . Assume $V_{BE}=0.7$ Volts, $R_B = 25K\Omega$, $R_C = 12K\Omega$ and $R_E = 8K\Omega$.

$$V_{EE} = -12V$$
, $V_{CC} = +12V$

Answer

Ans:

Tail current, $I_T = \frac{V_{EE}}{R_F} = \frac{12v}{8k} = 1.5mA$

The collector current in transistor Q2 is half thus tail current (i.e. 0.75mA) because each transistor gets half the tail current.

$$\therefore V_{out} = V_{cc} - I_c. \quad Rc = 12 - (0.75)(10k)$$

$$V_{out} = 4.5v$$
Tail current $I_T = \frac{V_{EE} - V_{BE}}{R_E} = \frac{12 - 0.7}{8k}$

$$I_T = 1.41mA$$

$$V_{out} = V_{cc} - \frac{I_T}{2}XRc = 12 - \frac{1.41m}{2}X12k$$

$$V_{out} = 3.54$$

www.StudentBounty.com tomework Help & Pas

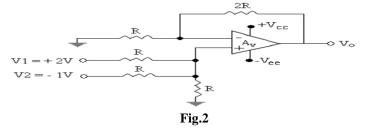
And Tail current, $I_T = \frac{V_{EE} - V_{BE}}{R_E + \frac{R_B}{2\beta dc}}$ $I_T = \frac{12 - 0.7}{8k + \frac{25k}{2 \times 100}}$ $I_T = 1.390 mA$

And output voltage,

$$V_{out} = V_{cc} - \frac{1}{2} I_T . R_c$$

= $12 - \frac{1}{2} \left(\frac{1.390}{2} m \right) (12k)$

 $V_{out} = 3.66v$


If the results obtained are compared, we find that the results obtained improve with each refinement, but the improvement is not significant.

 $\therefore \text{ The ideal tail current is } 1.41 \text{mA}$ $\therefore I_B = \frac{I_c}{\beta} = \frac{0.75m}{100} = 7.5\mu\text{A}$ $\therefore V_B = -I_B.R_B = -(7.5\mu)(25k)$ $V_B = -0.1875v$

Q3 (a) Explain what you understand by 'offset voltage' and 'offset current' of opamp. Discuss with a neat circuit diagram the technique used for minimizing offset voltage and offset current in an inverting amplifier.

Answer Article 3.2 – 3.4 of Text Book I

Q3 (b) Calculate the output voltage 'V₀' for the following non-inverting op-amp summer with $V_1 = 2V$ and $V_2 = -1V$

Answer

Ans: $V_0 = ([R_2V_1 + R_1V_2] / [R_1 + R_2])^* ([R + R_f] / R)$ If in the summer circuit the value of resistance are selected as $R_1 = R_2 = R$ and $R_f = 2R$. Then $V_0 = -[(2R) V_1/R + (2R) V_2/R]$ $= -[2(V_1 + V_2)]$ = -[2(2 - 1)] = -2 V

www.StudentBounty.com Homework Help & Pastpapers

Je Jenteount, com Q4 (a) Explain Schmitt trigger with the help of transfer characteristics. Also obtain the expression of hysteresis voltage V_H and output waveform for sinusoidal input signal.

Answer Article 5.3 of Text Book I

Q4 (b) The input to an op-amp differentiator circuit is a sinusoidal voltage of peak value 10µV and frequency of 2 kHz. If the values of differentiating components are given as $\mathbf{R} = 40 \text{ k}\Omega$ and $\mathbf{C} = 3\mu F$, determine the output voltage of differentiator circuit.

Answer

Ans: $V_{in} = V_{\max} \sin 2\pi f t = 10 \times 10^{-6} \sin 2\pi .2000.t$ $V_{in} = 10\sin 4000\pi t\mu v$ Scale factor = $CR = 3 \times 10^{-6} \times 40 \times 10^{3} = 0.12$:. $V_{out} = -CR \frac{dV_c}{dt} = -0.12 \frac{d}{dt} (10 \sin 4000\pi t) \mu v$ $V_{out} = -0.12 \times 10 \times \frac{d}{dt} (\sin 4000\pi t) \mu v$ $V_{out} = 1.2(4000\pi .\cos 4000\pi t)\mu v$ $V_{out} = 15.0816(\cos 4000\pi t)\mu v$

Q5 (a) Explain the working of R-2R Ladder Digital to Analog Converter.

Answer Article 10.2 of Text Book I

O5 (b) Explain Monostable multivibrator circuit operation using 555 timers. Also, determine the frequency of output signal.

Answer Article 8.3 of Text Book I

Q5 (c) Explain the working of Series Op-Amp Regulator

Answer Article 6.2 of Text Book I

Q6 (a) Differentiate between analog and digital signals.

Answer Article 1.1 of Text Book II

Q6 (b) Explain the concept of Parity bits with reference to error detection.

Answer Article 2.10 of Text Book II

- **O6(c)** Convert the following:
 - (i) $(5A34F)_{16}$ to binary
 - (ii) $(56)_{10}$ to Gray Code

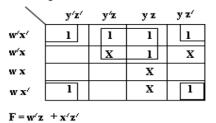
www.StudentBounty.com lomework Help & Pastpapers

AE54/AC54/AT54

(iii) $(93)_{10}$ to Excess-3 Code

Answer

(ii) $56 = (111000)_2 = (100100)$


(iii) Ex-3 representation of 93 is 11000110

Q7(a) Simplify the Boolean function 'F' together with don't care conditions 'd' in sum of Products

 $F(w, x, y, z) = \sum(0,1,2,3,7,8,10)$ d(w, x, y, z) = $\sum(5,6,11,15)$

Answer

Sum of products

Q7 (b) State and prove De Morgan's theorem using truth table.

Answer Article 3.11 of Text Book II

Q7 (c) Show that NAND gate is a Universal gate.

Answer Article 3.12 of Text Book II

Q8 (a) Explain the 4-bit parallel binary adder.

Answer Article 6.10 of Text Book II

Q8 (b) Write a short note on 8: 1 Multiplexers

Answer Article 9.5 of Text Book II

Q9 (a) Draw and explain the working of NAND-gate latch.

Answer Article 6.1 of Text Book II

Q9 (b) Distinguish between synchronous and asynchronous counters. Design a 3bit UP-DOWN synchronous counter.

www.StudentBounty.com Homework Help & Pastpapers

AE54/AC54/AT54

Answer

Difference between synchronous and asynchronous counter:

S J. Bounty.com 1. In synchronous counters synchronized at the same time. But in the case of asynchronous counter the output of first flip-flop is given as the clock input of the next flip-flop.

2. In synchronous counter the output occurs after nth clock pulse if number of bits are N. But in asynchronous counter the output is derived by previous one that's why n+1 step or clock pulse will be required.

Design of 3 bit UP DOWN counter:-

For M = 0, it acts as an UP counter and for M = 1 as a DOWN counter. The number of flip-flop required is 3. The input of the flip-flops are determined in a manner similar to the following table.

Direction	Present			Required FlipFlop					
	State								
M	Q_3	\mathbf{Q}_1	Q_0	J ₀	K ₀	J_1	K ₁	J_2	K ₂
0	0	0	0	1	Х	0	Х	0	Х
0	0	0	1	Х	1	1	Х	0	Х
0	0	1	0	1	Х	Х	0	0	Х
0	0	1	1	Х	1	Х	1	1	Х
0	1	0	0	1	Х	0	Х	Х	0
0	1	0	1	Х	1	1	Х	Х	0
0	1	1	0	1	Х	Х	0	Х	0
0	1	1	1	Х	1	Х	1	Х	1
1	0	0	0	1	Х	0	Х	1	Х
1	1	1	1	Х	1	1	Х	Х	0
1	1	1	0	1	Х	Х	0	Х	0
1	1	0	1	Х	1	Х	1	Х	0
1	1	0	0	1	Х	0	Х	Х	1
1	0	1	1	Х	1	1	Х	0	Х
1	0	1	0	1	Х	Х	0	0	Х
1	0	0	1	Х	1	Х	1	0	Х

Truth Tabl

LINEAR ICs & DIGITAL ELECTRONICS

From truth table
The
$$J_0 = K_0 = 1$$

 $J_1 = K_1 = Q_0 \overline{M} + \overline{Q_0} M$
 $J_2 = K_2 = \overline{M} Q_1 Q_0 + M \overline{Q_1} \overline{Q_0}$
Connecting the equations of all the flip-flops into NAND realization circuit
 $J_1 = K_1 = Q_0 \overline{M} + \overline{Q_0} M$
 $= \overline{Q_0 \overline{M} + \overline{Q_0} M}$
 $= \overline{Q_0 \overline{M} + \overline{Q_0} M}$
 $= \overline{Q_0 \overline{M} + \overline{Q_0} M}$
 $= \overline{M} Q_1 Q_0 + M \overline{Q_1} \overline{Q_0}$
 $= \overline{M} Q_1 Q_0 + M \overline{Q_1} \overline{Q_0}$
 $= \overline{M} Q_1 Q_0 \cdot M \overline{Q_1} \overline{Q_0}$
 $= \overline{M} Q_1 Q_0 \cdot M \overline{Q_1} \overline{Q_0}$
Logic diagram of 3 bit UP – DOWN Counter

Text Book

1. Linear Integrated Circuits, Revised Second Edition, D Roy Choudhury, Shail B. Jain, New Age International Publishers.

2. Digital Systems – Principles and Applications, Ninth Edition, Ronald J Tocci, Neal S Widmer and Gregory L. Moss, Pearson Education, 2008.