AMIETE - ET/CS/IT

Time: 3 Hours

JUNE 2013

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions, answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q. 1 Choose the correct or the best alternative in the following:

a. The value of the determinant $\left|\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 3 & 3 & 4 \\ 1 & 2 & 4 & 4 \\ 1 & 2 & 3 & 5\end{array}\right|$ is
(A) 0
(B) 1
(C) 2
(D) 3
b. The rank of the matrix $\left[\begin{array}{cccc}5 & 6 & 7 & 8 \\ 6 & 7 & 8 & 9 \\ 11 & 12 & 13 & 14 \\ 16 & 17 & 18 & 19\end{array}\right]$ is
(A) 4
(B) 3
(C) 2
(D) 1
c. If the curves $f(x, y)=0$ and $\phi(x, y)=0$ touch each other, then at the point of contact,
(A) $\frac{\partial \mathrm{f}}{\partial \mathrm{x}} \frac{\partial \phi}{\partial \mathrm{y}}=\frac{\partial \mathrm{f}}{\partial \mathrm{y}} \frac{\partial \phi}{\partial \mathrm{x}}$
(B) $\frac{\partial f}{\partial x} \frac{\partial f}{\partial y}=\frac{\partial \phi}{\partial x} \frac{\partial \phi}{\partial y}$
(C) $\frac{\partial f}{\partial x} \frac{\partial \phi}{\partial x}=\frac{\partial f}{\partial y} \frac{\partial \phi}{\partial y}$
(D) None of these
d. The value of the integral $\int_{0}^{1} \int_{0}^{\sqrt{\left(1-y^{2}\right)}} x^{3} y d x d y$ is
(A) $\frac{1}{6}$
(B) $\frac{1}{8}$
(C) $\frac{1}{12}$
(D) $\frac{1}{24}$
e. Using Newton-Raphson method, a recurrence formula for finding $\sqrt{\mathrm{N}}$ is
(A) $\mathrm{x}_{\mathrm{n}+1}=\frac{1}{2}\left(\mathrm{x}_{\mathrm{n}}+\frac{\mathrm{N}}{\mathrm{x}_{\mathrm{n}}}\right)$
(B) $\mathrm{x}_{\mathrm{n}+1}=\frac{1}{2}\left(\mathrm{x}_{\mathrm{n}}+\frac{1}{\mathrm{Nx}}\right)$
(C) $\mathrm{x}_{\mathrm{n}+1}=\frac{1}{2}\left(\mathrm{x}_{\mathrm{n}}-\frac{\mathrm{N}}{\mathrm{x}_{\mathrm{n}}}\right)$
(D) $\mathrm{x}_{\mathrm{n}+1}=\frac{1}{2}\left(\mathrm{x}_{\mathrm{n}}-\frac{1}{\mathrm{Nx}}\right)$
f. A family of straight lines passing through the origin is represented by
(A) $y d x+x d y=0$
(B) $y d x-x d y=0$
(C) $x d x+y d y=0$
(D) $x d x-y d y=0$
g. Particular integral of the differential equation $\frac{d^{2} y}{d x^{2}}+x^{2} y=\cos (n x+\alpha)$
(A) $\frac{x}{2 n} \cos (n x+\alpha)$
(B) $-2 n x \cos (n x+\alpha)$
(C) $\frac{x}{2 n} \sin (n x+\alpha)$
(D) $-2 n x \sin (n x+\alpha)$
h. $\beta\left(\frac{1}{2}, \frac{3}{2}\right)$ is equal to
(A) $\sqrt{\pi}$
(B) π
(C) $\frac{\sqrt{\pi}}{2}$
(D) $\frac{\pi}{2}$
i. The value of $J_{\frac{1}{2}}^{2}(x)+J^{2}-\frac{1}{2}(x)$ is
(A) $\frac{2}{\pi \mathrm{x}}$
(B) $\frac{\pi x}{2}$
(C) $\frac{2 x}{\pi}$
(D) $\frac{x}{2 \pi}$
j. If $u=\frac{x}{y}+\frac{y}{z}+\frac{z}{x}$, then
(A) $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}-z \frac{\partial u}{\partial z}=0$
(B) $x \frac{\partial u}{\partial x}-y \frac{\partial u}{\partial y}-z \frac{\partial u}{\partial z}=0$
(C) $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=0$
(D) None of these

Answer any FIVE Questions out of EIGHT Questions.

Each question carries 16 marks.

Q. 2 a. If $x^{x} y{ }^{y} z^{z}=c$, show that at $x=y=z, \frac{\partial^{2} z}{\partial x \partial y}=-(x \log e x)^{-1}$
b. Expand $f(x, y)=\tan ^{-1}(x y)$ in powers of $(x-1)$ and $(y-1)$ upto second degree terms.
Q. 3 a. Change the order of integration and then evaluate it $\int_{0}^{\infty} \int_{0}^{x} x e^{\frac{-x^{2}}{y}} d y d x$
b. Find the volume of the tetrahedron bounded by the coordinate planes and the plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$
Q. 4 a. Solve the equation $\left|\begin{array}{ccc}x+1 & 2 x+1 & 3 x+1 \\ 2 x & 4 x+3 & 6 x+3 \\ 4 x+1 & 6 x+4 & 8 x+4\end{array}\right|=0$
b. Find the values of λ for which the equations $(2-\lambda) x+2 y+3=0$, $2 x+(4-\lambda) y+7=0,2 x+5 y+(6-\lambda)=0$ are consistent and find the values of x and y corresponding to each of these values of λ.
Q. 5 a. Use Regula-Falsi method to compute the real root of $\mathrm{xe}^{\mathrm{x}}=2$ correct to three decimal places.
b. Use Runge-Kutta method of order four to find $y(0.2)$ for the equation $\frac{d y}{d x}=\frac{y-x}{y+x}, y(0)=1$. Take $h=0.2$.
Q. 6 a. Solve the equation $\frac{d y}{d x}=-\left(\frac{x+y \cos x}{1+\sin x}\right)$
(8)
b. Find the orthogonal trajectories of the family of coaxial circles $x^{2}+y^{2}+2 \lambda y+C=0, \lambda$ being the parameter.
Q. 7 a. Solve the differential equation $\frac{d^{2} y}{d x^{2}}+4 y=x^{2}+\cos 2 x$
b. Use method of variation of parameters to solve $\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+9 y=\frac{e^{3 x}}{x^{2}}$
Q. 8 a. Show that
(i) $\int_{0}^{\pi / 2} \sqrt{\sin \theta} \mathrm{~d} \theta \int_{0}^{\pi / 2} \frac{1}{\sqrt{\sin \theta}} \mathrm{~d} \theta=\pi$
(ii) $\beta(\mathrm{m}, \mathrm{n}+1)+\beta(\mathrm{m}+1, \mathrm{n})=\beta(\mathrm{m}, \mathrm{n})$
b. Solve in series the equation $9 x(1-x) \frac{d^{2} y}{d x^{2}}-12 \frac{d y}{d x}+4 y=0$
Q. 9 a. Show that $J_{4}(x)=\left(\frac{48}{x^{3}}-\frac{8}{x}\right) J_{1}(x)+\left(1-\frac{24}{x^{2}}\right) J_{0}(x)$
b. Show that $\int_{-1}^{1}\left(1-x^{2}\right) P_{m}^{\prime}(x) \quad P_{n}^{\prime}(x) d x=0$

