AMIETE - CS

Time: 3 Hours

JUNE 2013

Max. Marks: 10

chudentBounty.com PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

0.1 Choose the correct or the best alternative in the following:

 (2×10)

- a. The grammar with production rules
 - $\{S \longrightarrow aab/bac/ab\}$
 - $S \longrightarrow abb/ab$
 - $S \longrightarrow aS/b$
 - $B \longrightarrow bab/b$ is
 - (A) CFG

- **(B)** Regular
- (C) Context Sensitive
- (D) None of these
- b. Which of the following is not regular:
 - (A) String of 0's whose length is a perfect square
 - **(B)** Set of all palindromones made up of 0's and 1's
 - (C) Strings of 0's, whose length is a prime number
 - (D) All of these
- c. The recognizing capability of Nondeterministic FSM and corresponding deterministic FSM
 - (A) may be different
- **(B)** must be different

(C) must be same

- (D) none of these
- d. In context free languages, state the size of parse tree, if the length of longest path is n
 - (A) 2^{n-1}

(B) 2^{n}

(**C**) n

- (D) none of these
- e. Which of the following pairs of regular expressions are equivalent?
 - (A) $1(01)^*$ and $(10)^*$
- **(B)** $y(yy)^*$ and $(yy)^*y$

(C) y + and y * y +

(**D**) All of these

Student Bounty Com Code: AC68 Subject: FINITE AUTOMATA & FORMULA LAN

- f. Context free Grammar is not closed under
 - (A) Union

- (B) Kleen star
- (C) Complementations
- (**D**) Concatenation
- g. The set $A = \{a^n b^n a^n / n = 1, 2, 3....\}$ is an example of a grammar that is
 - (A) Regular

- (B) Context free
- (C) Context Sensitive
- (D) None of these
- h. Let $G = \{s\}, \{a, b\}, \{S \rightarrow GS | b, S\}$ find language generated by G
 - (A) $L(G) = \phi$

(B) $L(G) = a^n b$

(C) $L(G) = a^*$

- **(D)** $L(G) = a^n b^{a^n}$
- i. $L = \{ a^p | P \text{ is a prime} \} \text{ is}$
 - (A) Regular

- **(B)** Not a regular
- (C) Accepted by DFA
- **(D)** Accepted by PDA
- j. Grammar $S \rightarrow aAb$, $A \rightarrow aAb$ | a is in
 - (A) L R(1) not in LR(0)
- (\mathbf{B}) both LR(0) and LR(1)
- (C) LR(0) but not in LR(1)
- (**D**) neither in LR(0) not in LR(1)

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- **Q.2** a. Use mathematical induction to prove that for all positive integers n, (8) $n(n^2 + 5)$ is an integer multiple of 6.
 - b. Define the terms alphabet, power of alphabet, string and language. Provide one example for each. **(8)**
- 0.3 a. For the following NFA, find the equivalent DFA.

	0	1
\rightarrow q ₀	$\{q_0,q_1\}$	$\{q_0\}$
q_1	$\{q_2\}$	$\{q_2\}$
q_2	$\{q_3\}$	$\{q_3\}$
O2	ф	ф

b. Write regular expression for the language defined over alphabet {a, b} as "The set of strings having at most one pair of consecutive a's and at most one pair of consecutive b's. **(8)**

(8)

Code: AC68 Subject: FINITE AUTOMATA & FORMULA LA

a. Describe the languages accepted by the following DFAs **Q.4**

- b. Show that concatenation of two regular expression is a regular expression. (8)
- **Q.5** a. Prove following is not a regular language: **(8)** $L = \{xx^{R} \mid x \in \{0,1\}^{+}\}\$
 - b. If L is a Regular language then show that reverse of L i.e. L^R is also regular.
- a. Let $L = \{a^n b^n c^m d^m \mid n, m \ge 1\}$. Draw a PDA that accepts L. **Q.6** (8)
 - b. Define a Context Free Grammar that generates the language: **(8)** $L = \left\{ a^i b^j c^k d^\ell \middle| i, j, k, \ell \ge 1, i = \ell, j = k \right\} \text{ Draw a PDA that accepts } L.$
- a. Prove that the following language is not context free, **Q.7 (8)** $L_1 = \{a^p \mid p \text{ is a prime}\}\$
 - b. What is Chomsky Normal form? Explain how a grammar can be put in CNF. Use an example to illustrate. **(8)**
- 0.8 a. Consider the following TM M' with transitions as follows: **(8)** $\delta(q_0,1) = (q_1,0,R)$

$$\delta(q_1, 1) = (q_1, 1, R)$$

$$o(q_1, i) = (q_1, i, K)$$

$$\delta(q_1,0) = (q_2,1,R)$$

$$\delta(q_2,0) = (q_3,0,L)$$

$$\delta(q_3,0) = (q_0,0,R)$$

$$\delta(q_3,1) = (q_3,1,L)$$

- q_0 is the initial state and 0 is taken as blank symbol. Trace the sequence of moves when the machine scan starts on ...00 1111 000 11 00...
- b. Construct a TM with three character 0, 1, and # which locates a '1'under the following conditions. There is only one # on the tape and somewhere to the right of it is a '1'. The rest of the tape is blank. The head starts at or to the left of the #. When the TM halts, the tape is unchanged and head stops at the '1'. Zero is taken as the blank symbol. **(8)**

Code: AC68 Subject: FINITE AUTOMATA & FORMULA LA

- Q.9 a. Define a Recursively Enumerable language. Give an example of it. Give an example of a language that is not recursively enumerable. (8
 - b. Show that the following problem is undecidable. (8) "Given x_1, x_2 and x_3 determine whether $f(x_1) = \pi^2(x_2, x_3)$, where f is a fixed non total recursive function and π^2 is cantor numbering function".