Code: AC64/AT64 Subject: DESIGN & ANALYSIS OF ALGOR

AMIETE - CS/IT

Time: 3 Hours

JUNE 2013

GOR Max. Marks: 100

ROLL NO.

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

(2×10)

a. _____ method is used for representing upper bound of algorithm's running time.

(A) theta notation	(B) Big-oh notation
(C) omega notation	(D) None of these

b. Let W(n) and A(n) denote respectively, the worst case and average case running time of an algorithm executed on an input of size n. Which of the following is **ALWAYS TRUE**?

(A)	A(n) =	$\Omega(W(n))$
(C)	A(n) =	O(W(n))

c. The Breadth first Search algorithm has been implemented using queue as data structure. One possible order of searching the following graph is

(A) MNOPQR	(B) NQMPOR
(C) QMNPRO	(D) QMNPOR

(B) $A(n) = \Theta(W(n))$ **(D)** A(n) = o(W(n))

d. What is the maximum height of any AVL tree with 7 nodes? Assume the height of the tree with a single node is 0.

(A) 2	(B) 3
(C) 4	(D) 5

AC64/AT64 / JUNE - 2013

AMIETE - CS/IT

1

i. Assuming $P \neq NP$, which of the following is **TRUE**?

(A) NP-complete = NP	(B) NP-complete \cap P = Ø
(C) NP-hard = NP	(D) $P = NP$ -complete

The worst-case performance of interpolation search is i.

(A) $\log 2 n + 1$	(B) $\log 2 \log 2 n + 1$
(C) $\log 2 n$	(D) quadratic

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

a. Compare the advantages and disadvantages when a list of numbers are **Q.2** represented using (i) an array (ii) a linked list (4) AMIETE - CS/IT 2

AC64/AT64 / JUNE - 2013

Code: AC64/AT64 Subject: DESIGN & ANALYSIS OF ALGOR

ROLL NO.

c. Use Strassen's matrix multiplication algorithm to multiply (6)

 $\mathbf{X} = \left[\begin{array}{cc} 3 & 2 \\ 4 & 8 \end{array} \right] \text{ and } \mathbf{Y} = \left[\begin{array}{cc} 1 & 5 \\ 9 & 6 \end{array} \right]$

Q.5 a. Consider the graph and its one of the adjacency list representations as given below: (8)

$$\begin{array}{c} \mathbf{g} \\ \mathbf{a} :\to d, e, b, g \\ \mathbf{c} :\to f, e, b, d \\ \mathbf{c} :\to f, e, b, d \\ \mathbf{c} :\to a, c, b \\ \mathbf{g} :\to a \end{array}$$

Show the output by depth-first-search algorithm on above graph considering the adjacency list of the graph. Also mark the tree edges by solid line, back edges by dashed line.

b. Explain Johnson-Trotter algorithm, generate all permutations of 1, 2, 3 and 4.

AC64/AT64 / JUNE - 2013

AMIETE - CS/IT

(8)

3

Code: AC64/AT64 Subject: DESIGN & ANALYSIS OF ALGOR

StudentBounty.com a. Define max-heap. Are the trees given below max-heaps? Justify your answe 0.6

ROLL NO.

- b. Explain how a determinant can be computed using Gaussian Elimination method. (10)
- a. Write the pseudo code for Floyd's algorithm and explain. (8) **Q.7**
 - b. Consider the directed graph shown in the figure below. There are multiple shortest paths between vertices S and T. Apply Dijkstra's algorithm and find out the shortest path. (8)

- 0.8 Show the result of inserting the keys 4,19, 17, 11, 3, 12, 8, 20, 22, 23, 13, 18, a. 14, 16, 1, 2, 24, 25, 26, 5 in order to an empty B-Tree of degree 3. Only draw the configurations of the tree just before some node must split, and also draw the final configuration. (10)
 - b. Define NP-complete decision problem. Consider the example of Hamiltonian circuit and explain how closely related decision problems are polynomially reducible. (6)
- 0.9 a. Define sum of subset problem. Apply backtracking to solve the following instance of sum of subset problem: w = (3, 4, 5, 6) and d = 13. Briefly explain the method using a state-space tree. (10)
 - b. What are commonalities and differences between backtracking and branch and bound algorithms? (6)

AC64/AT64 / JUNE - 2013

AMIETE - CS/IT