
AC59/AT59 OPERATING SYSTEMS & SYSTEMS SOFTWARE JUNE 2013

© IETE 1

Q2 (a) What is operating system? Discuss the various features of operating
system?

Answer
An operating system is system software that provides interface between user and
hardware. The operating system provides the means for the proper use of resources
(CPU, memory, I/O devices, data and so on) in the operation of the computer system. An
operating system provides an environment within which other programs can do useful
work.
Various functions of operating system are as follows:
(1) Process management: A process is a program in execution. It is the job, which is
currently being executed by the processor. During its execution a process would require
certain system resources such as processor, time, main memory, files etc.
OS supports multiple processes simultaneously. The process management module of the
OS takes care of the creation and termination of the processes, assigning resources to the
processes, scheduling processor time to different processes and communication among
processes.
(2) Memory management module: It takes care of the allocation and de allocation of
the main memory to the various processes. It allocates main and secondary memory to
the system/user program and data. To execute a program, its binary image must be loaded
into the main memory. Operating System decides.

(a) Which part of memory are being currently used and by whom.
(b) Which process to be allocated memory.
(c) Allocation and de allocation of memory space.

(3) I/O management: This module of the OS co-ordinates and assigns different I/O
devices namely terminals, printers, disk drives, tape drives etc. It controls all I/O devices,
keeps track of I/O request, issues command to these devices. I/O subsystem consists of

(i) Memory management component that includes buffering, caching and
spooling.
(ii) Device driver interface
(iii) Device drivers specific to hardware devices.

(4) File management: Data is stored in a computer system as files. The file management
module of the OS would manage files held on various storage devices and transfer of
files from one device to another. This module takes care of creation, organization,
storage, naming, sharing, and backup and protection of different files.
(5) Scheduling: The OS also establishes and enforces process priority. That is, it
determines and maintains the order in which the jobs are to be executed by the computer
system. This is so because the most important job must be executed first followed by less
important jobs.
(6) Security management: This module of the OS ensures data security and integrity.
That is, it protects data and program from destruction and unauthorized access. It keeps
different programs and data which are executing concurrently in the memory in such a
manner that they do not interfere with each other.
(7) Processor management: OS assigns processor to the different task that must be
performed by the computer system. If the computer has more than one processor idle,
one of the processes waiting to be executed is assigned to the idle processor. OS

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

AC59/AT59 OPERATING SYSTEMS & SYSTEMS SOFTWARE JUNE 2013

© IETE 2

maintains internal time clock and log of system usage for all the users. It also creates
error message and their debugging and error detecting codes for correcting programs.

Q2 (b) Explain the following facilities for implementing interacting processes in

programming languages and Operating systems:
(i) Fork-Join primitives
(ii) Unix processes

Answer
 Fork-Join primitives

Fork and Join are primitives in a higher level programming. The syntax of these
primitives is as follows:
 fork <label>;
 join <var>;
where <label> is a label associated with some program statement , and <var> is a
variable. A statement fork lab1 causes creation of a new process which starts
executing at the statement with the label lab1. This process is concurrent with the
process which executed the statement fork lab1. A join statement synchronizes
the birth of a process with termination of one or more processes. Execution of a
statement join v; has the following effect:

1. Value of a variable v is decremented by 1.
2. The process executing the join statement terminates.
3. A new process is created if the new value of v is zero. This process

begins execution of the statement following the join v statement.
Thus, if v is initialized to some value n, n processes need to execute the statement
join v before the new process is created.
The program given below implements the computation result := max(a)/min(a),
where a is an array, using the fork and join primitives. Since m is initialized to 3,
join m; will have to be executed by all three processes before the execution of
result: = y / x; is initiated.

 for i := 1 to 100
 read a[i];
 m := 3;
 fork lab1;
 fork lab2;
 Goto lab3;
 lab1 : x := min(a);
 Goto lab3;
 lab2 : y := max(a);
 lab3 : join m;
 result := y/x;

Fork-Join provides a functionally complete facility for control synchronization.
Hence it can be used to implement arbitrary synchronizations. However, being
unstructured primitives, their use is cumbersome and error-prone.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

AC59/AT59 OPERATING SYSTEMS & SYSTEMS SOFTWARE JUNE 2013

© IETE 3

(iii)Unix processes
Unix permits a user process to create child processes and to synchronize its
activities with respect to child processes. The following features are provided for
this purpose:

1. Creation of a child process
A process creates a child process through the system call fork. fork creates a child
process and sets up its execution environment. It then allocates an entry in the
process table i.e. PCB; for the newly created process and marks its state as ready.
fork also returns the id of the child process to its creator; called the parent process.
The child process shares the address space and file pointers of the parent process,
hence data and files can be directly shared. A child process can in turn create its
own child processes, thus leading to the creation of a process tree. The system
keeps track of the child-parent relationships throughout the lives of the parent and
child processes.
The child process environment (called its context) is a copy of the parent’s
environment. Hence the child executes the same code as the parent. At creation,
the program counter of the child process is set at the instruction at which the fork
call returns. The only difference between the parent and the child processes is that
in the parent process fork returns with the process id of the child process, while in
the child process it returns with a ‘0’.

2. Termination of a process
Any process pi can terminates itself through the exit system call

 exit (status_call);
where the value of staus_code is saved in the kernel for access by the parent of pi.
If the parent is waiting for the termination of pi, a signal is sent to it. The child
processes of pi are made the children of a kernel process.

3. Waiting for termination of a child process.
A process pi can wait for the completion of a child process through the system

call
 wait(adr(xyz));

where xyz is available. When a child of pi terminates (or if one has already
terminated) the wait call returns after storing the termination status of the
terminated child process into xyz. The wait call returns with a ‘-1’ if pi has no
children.
 main() {
 int saved_status;
 for (i=0; i < 3; i++) {
 if (fork() == 0) {
 /* code for child processes */
 exit;
 }
 }
 while (wait (&saved_status) != -1);
 /* all child processes terminated? */

 }

Q3 (a) Explain Event Control Block (ECB)? With the help of suitable diagram
discuss the organization of the different modules of event handler.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

AC59/AT59 OPERATING SYSTEMS & SYSTEMS SOFTWARE JUNE 2013

© IETE 4

Answer
An event control block (ECB) is used facilitate quick identification of a process awaiting
an event. It contains all information concerning an event whose occurrence is anticipated
by some process in the system. Different fields in the ECB are shown in the figure. The
event description field describes the event. Its content can vary depending on the nature
of the event. The event description field consists of two parts.

(i) Event class
(ii) Event details

ECB pointer

Event description
Process id of awaiting

process
Event Control Block (ECB)

OS kernel uses the ECB pointer field to maintain a list of ECB’s. When an event occurs,
it scans the list of ECB’s to find an ECB with a matching event description. The process
id field of the ECB points to the affected process. The state of the process is now changed
to reflect the occurrence of the event. To speed this action, scheduler can maintain many
ECB lists, e.g. a list of ECB’s for awaited inter process messages, a list of ECB’s for I/O
operations on a specific I/O device, etc. The following example illustrates the use of
ECBs to locate the PCB of a process affected by an event.

Kernel actions when process pi requests an I/O operation on some device d, and when the
I/O operation completes, can be described as follows:

1) Kernel creates an ECB, and initializes it as follows:
2) The newly created ECB (call as ECBi) is added to a list of ECB’s.
3) The state of pi is changed to blocked and address of ECBi is put into the ‘Event

information’ field of pi’s PCB.
4) pi's PCB may now be shifted to appropriate scheduling list.
5) When the interrupt ‘End of I/O on device d’ is raised, ECBi is located by

searching for an ECB with a matching event description field.
6) PCB of pi is located from ECBi. State of pi is now changed to ready.

Figure below shows the organization of the modules constituting the event handler
component. The interrupt handler gains control when an interrupt signals the occurrence
of an event. It saves the PSR and contents of the CPU registers in the PCB of the
interrupted process and changes the state of the process from running to ready. It then
obtains the event class and event details from the interrupt code field in the saved PSR
and invokes the event handler for the appropriate event class. The invoked handler
analyses the event and performs appropriate actions. These actions typically result in the
creation of a new ECB (when a process makes some request to the OS), or in a change of
state for some process. At the end of its processing, the event handler module passes
control to the process scheduler, which selects a process and passes its PCB to the CPU
dispatcher.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

AC59/AT59 OPERATING SYSTEMS & SYSTEMS SOFTWARE JUNE 2013

© IETE 5

 Event

 Handler

 Data Flow

 Control Flow

Q3 (b) Write down Banker’s algorithm for multiple resources? List different Inputs
and Data structures used in the algorithm.

Answer
Following is the Banker’s algorithm for multiple resources:
Inputs
 n : Number of processes:
 r : Number of resource classes;
 Blocked : Set of processes;
 Running : Set of processes;
 preq : Process making the new resource request;
 New_req : array [1…r] of integer;
Data structures
 Max : array [1..n, 1..r] of integer;
 Allocated_resources : array [1..n, 1..r] of integer;
 Requested_resources : array [1..n, 1..r] of integer;
 Total_alloc : array [1..r] of integer;
 Total_exist : array [1..r] of integer;
 Active : Set of processes;
 Simulated_alloc : array [1..r] of integer;

1. Active := Running Blocked
2. for k = 1..r

Requested_resources[req,k] := New_request[k];
3. for k = 1..r /* Compute project state */

Allocated_resources[req,k] :=
Allocated_resources[req,k] + New_request[k];

PCB lists
ECB lists

IO
Handler

Memory
Handler

Sync
handler

Interrupt
Handler

Process
Scheduler

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

AC59/AT59 OPERATING SYSTEMS & SYSTEMS SOFTWARE JUNE 2013

© IETE 6

Total_alloc[k] := Total_alloc[k] + New_request[k];
4. for k = 1..r /* Check if new state is feasible */

if Requested_resources[req,k] >
Total_exist[k] Total_alloc[k]
then goto step 6;

5. Simulated_alloc := Total_alloc;
while p1 Active such that k

Total_exist[k] Simulated_alloc[k]
 max[l,k] Allocated_resources[l.k]

(a) Delete p1 from Active;
(b) for k = 1..r

Simulated_alloc[k] :=
Simulated_alloc[k] Allocated_resources[l,k];

6. if Active is empty then /* Projected state is safe */
for k = 1..r

Requested_resources[req,k] := 0;
else /* Disallow projected grant and revert to current state */

for k = 1..r
Allocated_resources[req,k] :=

Allocated_resources[req,k] New_request[k];
Total_alloc[k] := Total_alloc[k] New_request[k];

The algorithm keeps a request pending if the projected state is infeasible (Step 4). Else it
simulates the grant of the new request (Step 3) and determines its safety (Step5). If the
request is safe, its grant is confirmed, else it is nullified (Step 6).

Q4 (a) What is a semaphore? Explain binary semaphore with the help of an
example?

Answer
A semaphore is a synchronization tool that provides a general-purpose solution to
controlling access to critical sections. A semaphore is an abstract data type (ADT) that
defines a nonnegative integer variable which, apart from initialization, is accessed only
through two standard operations: wait and signal. The classical definition of wait in
pseudo code is

wait(S){
while(S<=0)
; // do nothing
S--;

}
The classical definitions of signal in pseudocode is

signal(S){
S++;

}
A binary semaphore is one that only takes the values 0 and 1. These semaphores are used
to implement mutual exclusion. The following program code illustrates a Critical-section

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

AC59/AT59 OPERATING SYSTEMS & SYSTEMS SOFTWARE JUNE 2013

© IETE 7

implementation using a binary semaphore. The main program declares a semaphore
named mutex (and initializes it to 1) and initiates two concurrent processes. Each process
performs a P (mutex) to gain entry to the CS, and a V (mutex) while exiting from the CS.
Since mutex is initialized to 1, only one process can be in the CS at any time.
var mutex : semaphore := 1;

 Parbegin
 Repeat
 P(mutex);
 { Critical Section}
 V(mutex);
 {Remainder of the cycle}
 forever;

 Repeat
 P(mutex);
 { Critical Section}
 V(mutex);
 {Remainder of the cycle}
 forever;

 Parend
end

Process pi Process pj

Q4 (b) What is Critical-Section problem? What are the requirements that critical–
section problem must satisfy for its solution?

Answer
Consider a system consisting of n processes {P0, P1… Pn-1). Each process has a segment
of code, called a critical section, in which the process may be changing common
variables, updating a table, writing a file, and so on. The important feature of the system
is that, when one process is executing in its critical section, no other process is to be
allowed to execute in its critical section. That is, no two processes are executing in their
critical section at the same time. Thus, the execution of critical sections by the processes
is mutually exclusive in time. The critical-section problem is to design a protocol that the
processes can use to cooperate. Each process must request permission to enter its critical
section. The section of code implementing this request is the entry section. The critical
section may be followed by an exit section. The remaining code is the remainder
section. The general structure of a typical process Pi is shown below:
 do {

 critical section

 remainder section
 } while (TRUE);

A solution to the critical-section problem must satisfy the following three requirements:

entry section

exit section

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

AC59/AT59 OPERATING SYSTEMS & SYSTEMS SOFTWARE JUNE 2013

© IETE 8

• Mutual Exclusion: If process Pi is executing in its critical section, then no other
processes can be executing in their critical sections.

• Progress: If no process is executing in its critical section and some processes
wish to enter their critical sections, then only those processes that are not
executing in their remainder section can participate in the decision on which will
enter its critical section next, and this selection cannot be postponed indefinitely.

Bounded Waiting: There exists a bound on the number of times that other processes are
allowed to enter their critical sections after a process has made a request to enter its
critical section and before that request is granted.

Q4 (c) Discuss the different techniques with which a file can be shared among
different users?

Answer
Some popular techniques with which a file can be shared among different users are:
1. Sequential sharing: In this sharing technique, a file can be shared by only one
program at a time, that is, file accesses by P1 and P2 are spaced out over time. A lock
field can be used to implement this. Setting and resetting of the lock at file open and close
ensures that only one program can use the file at any time.
2. Concurrent sharing: Here a number of programs may share a file concurrently. When
this is the case, it is essential to avoid mutual interference between them. There are three
categories of concurrent sharing:

a. Immutable files: If a file is shared in immutable mode, none of the sharing
programs can modify it. This mode has the advantage that sharing programs are
independent of one another.

b. Single image immutable files: Here the changes made by one program are
immediately visible to other programs. The Unix file system uses this file sharing mode.

c. Multiple image mutable files: Here many programs can concurrently update
the shared file. Each updating program creates a new version of the file, which is
different from the version created by concurrent programs. This sharing mode can only
be used in applications where concurrent updates and the existence of multiple versions
are meaningful.

Q5 (a) With the help of example, discuss overlay?

Answer
To enable a process to be larger than the amount of memory allocated to it, we can use
overlays. The idea of overlays is to keep in memory only those instructions and data that
are needed at any given time. When other instructions are needed, they are loaded into
space occupied previously by instructions that are no longer needed.
As an example, consider a two-pass assembler. During pass1, it constructs a symbol
table; then, during pass2, it generates machine-language code. We may be able to
partition such an assembler into pass1 code, pass2 code, the symbol table, and common
support routines used by both pass1 and pass2. Assume that the sizes of these
components are as follows:

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

AC59/AT59 OPERATING SYSTEMS & SYSTEMS SOFTWARE JUNE 2013

© IETE 9

Pass1 : 70 KB
Pass2 : 80 KB
Symbol table : 20 KB
Common routines : 30 KB

To load everything at once, we would require 200 KB of memory. If only 150 KB is
available, we cannot run our process. However, notice that pass1 and pass2 do not need
to be in memory at the same time. We thus define two overlays: Overlay A is the symbol
table, common routines, and pass1, and overlay B is the symbol table, common routines,
and pass2.
We add an overlay driver (10 KB) and start with overlay A in memory. When we finish
pass1, we jump to the overlay driver, which reads overlay B into memory, overwriting
overlay A, and then transfers control to pass2. Overlay A needs only 120 KB, whereas
overlay B needs 130 KB. We can now run our assembler in the 150 KB of memory. It
will load somewhat faster because fewer data need to be transferred before execution
starts. However, it will run somewhat slower, due to the extra I/O to read the code for
overlay B over the code for overlay A.
The code for overlay A and the code for overlay B are kept on disk as absolute memory
images, and are read by the overlay driver as needed. Special relocation and linking
algorithms are needed to construct the overlays. As in dynamic loading, overlays do not
require any special support from the operating system. They can be implemented
completely by the user with simple file structures, reading from the files into memory and
then jumping to that memory and executing the newly read instructions. The operating
system notices only that there is more I/O than usual.

Q5 (b) Consider a paging system with the page table stored in memory

 (i) If a memory reference takes 200 nanoseconds, how long does a
paged reference take?

(iii) If we add associative registers, and 75 percent of all page-table
references are found in the associative registers, what is the
effective memory reference time? (Assume that finding a page-table
entry in the associative registers takes zero time, if the entry is
there.)

Answer

(i) 400 nanoseconds; 200 nanoseconds to access the page table and 200
nanoseconds to access the word in memory.

(ii) Effective access time = 0.75 * (200 nanoseconds) + 0.25 * (400
nanoseconds) = 250 nanoseconds.

Q5 (c) What is the cause of thrashing? How does the system detect thrashing?

Answer
Thrashing is caused by under allocation of the minimum number of pages required by a
process, forcing it to continuously page fault. The system can detect thrashing by

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

AC59/AT59 OPERATING SYSTEMS & SYSTEMS SOFTWARE JUNE 2013

© IETE 10

evaluating the level of CPU utilization as compared to the level of multiprogramming. It
can be eliminated by reducing the level of multiprogramming.

Q6 (a) Define Intermediate Representation? What are the desirable properties of
Intermediate Representation?

Answer
“An intermediate representation (IR) is a representation of a source program which
reflects the effect of some, but not all, analysis and synthesis tasks performed during
language processing”.

Desirable properties of an IR are:

• Ease of use: IR should be easy to construct and analyze.
• Processing efficiency: Efficient algorithms must exist for constructing and

analyzing the IR.
• Memory efficiency: IR must be compact.

Like the pass structure of language processors, the nature of intermediate representation
is influenced by many design and implementation considerations.

Q6 (b) Define Grammar of a language. Identify the different classes of grammar.
Explain their characteristics and limitations.

Answer
A formal language grammar is a set of formation rules that describe which strings
formed from the alphabet of a formal language are syntactically valid, within the
language. A grammar only addresses the location and manipulation of the strings of the
language. It does not describe anything else about a language, such as its semantics.
As proposed by Noam Chomsky, a grammar G consists of the following components:

• A finite set N of non terminal symbols.
• A finite set _ of terminal symbols that is disjoint from N.
• A finite set P of production rules, each rule of the form

Where * is the Kleene star operator and denotes set union. That is, each production rule
maps from one string of symbols to another, where the first string contains at least one
non terminal symbol.

The Chomsky hierarchy consists of the following levels:
• Type-0 grammars (unrestricted grammars) include all formal grammars. They generate
exactly all languages that can be recognized by a Turing machine. The language that is
recognized by a Turing machine is defined as all the strings on which it halts. These
languages are also known as the recursively enumerable languages.
• Type-1 grammars (context-sensitive grammars) generate the context sensitive
languages. These grammars have rules of the form with A a non terminal
and and are strings of terminals and non terminals. The strings and may be
empty, but must be nonempty. The rule is allowed if S does not appear on the

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

AC59/AT59 OPERATING SYSTEMS & SYSTEMS SOFTWARE JUNE 2013

© IETE 11

right side of any rule. The languages described by these grammars are exactly all
languages that can be recognized by a non-deterministic
• Type-2 grammars (context-free grammars) generate the context-free languages. These
are defined by rules of the form with A a non terminal and a string of
terminals and non terminals. These languages are exactly all languages that can be
recognized by a non-deterministic pushdown automaton. Context free languages are the
theoretical basis for the syntax of most programming languages.
• Type-3 grammars (regular grammars) generate the regular languages. Such a grammar
restricts its rules to a single non terminal on the left-hand side and a right-hand side
consisting of a single terminal, possibly followed by a single non terminal. The rule

 is also here allowed if S does not appear on the right side of any rule. These
languages are exactly all languages that can be decided by a finite state automaton.
Additionally, this family of formal languages can be obtained by regular expressions.
Regular languages are commonly used to define search patterns and the lexical structure
of programming languages.

Q6 (c) Discuss the different criteria used to classify the data structures used for
Language processors?

Answer
The data structures used in language processing can be classified on the basis of the
following criteria:

• Nature of a data structure: whether a linear or non linear data structure. A
linear data structure consists of a linear arrangement of elements in the memory.
The physical proximity of its elements is used to facilitate efficient search. It
requires a contiguous area of memory for its elements. This poses problem in
situations where the size of a data structure is difficult to predict and hence the
designer is forced to overestimate the memory requirements of a linear data
structure to ensure that it does not outgrow the allocated memory. Hence, this
leads to wastage of memory. The elements of a nonlinear data structure are
accessed using pointers. Hence the elements need not occupy contiguous
locations of memory, which avoids the memory allocation problem as in linear
data structures. However, the nonlinear arrangement of elements leads to lower
search efficiency.

• Purpose of a data structure: whether a search data structure or an allocation data
structure. Search data structures are used during language processing to maintain
attribute information concerning different entities in the source program. These
data structures are characterized by the fact that the entry fro an entity is created
only once but may be searched for a large number of times. Search efficiency is
therefore very important. Allocation data structures are characterized by the fact
that the address of the memory area allocated to an entity is known to the user of
that entity. Thus no search operations are conducted on them. Speed of allocation
or deal location and efficiency of memory utilization are the important criteria for
the allocation data structures.

• Lifetime of a data structure: whether used during language processing or during
target program execution.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

AC59/AT59 OPERATING SYSTEMS & SYSTEMS SOFTWARE JUNE 2013

© IETE 12

Q7 (a) What is parsing? Give difference between top down parsing and bottom up
parsing.

Answer
The goal of parsing is to determine the syntactic validity of a source string. If the string
is valid, a tree is built for use by subsequent phase of compiler.
Top down parsing: Given an input string, top down parsing attempts to derive a string
identical to it by successive application of grammar rules to the grammar’s distinguished
symbol. When such a string is obtained, a tree representing its derivation would be the
syntax tree for an input string. Thus if is input-string, a top down parse determines a
derivation sequence.

Bottom up parsing: A bottom up parse attempts to develop syntax tree for an input

string through a sequence of reduction. If the input string can be reduced to
the distinguished symbol, the string is valid. If not, error would be detected
and indicated during the process of reduction itself.

Q7 (b) What are self-relocating programs? Why self-relocating programs are

less efficient then re locatable programs?

Answer Page Number 232 of Text Book

Q7 (c) The translated origin of the assembly program P is 500. If the program
is loaded for execution in the memory area starting with the address
900, calculate the relocation factor of P.

Answer
The relocation factor of P is defined as

 = 900 – 500
 = 400

Q8 (a) What is assembly language? What are the basic features provided by

assembly language that simplifies programming as compared to
machine language?

Answer
An assembly language is a machine dependent, low level programming language which
is specific to a certain computer system (or a family of computer systems)
Compared to the machine language of a computer system, it provides three basic features
which simplify programming:

• Mnemonic operation codes: Use of mnemonic operation codes (also called
mnemonic opcodes) for machine instructions eliminates the need to memorize
numeric operation codes. It also enables the assembler to provide helpful
diagnostics, for example indication of misspelt operation codes.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

AC59/AT59 OPERATING SYSTEMS & SYSTEMS SOFTWARE JUNE 2013

© IETE 13

• Symbolic operands: Symbolic names can be associated with data or instructions.
These symbolic names can be used as operands in assembly statements. The
assembler performs memory bindings to these names; the programmer need not
know any details of the memory bindings performed by the assembler. This leads
to a very important advantage during program modification.

• Data declarations: Data can be declared in a variety of notations, including the
decimal notation. This avoids manual conversion of constants into their internal
machine representation, for example, conversion of -5 into (11111010)2 or 10.5
into (41A80000)16.

Q8 (b) Explain the following Assembler Directives:-
 (i) ORIGIN

(ii) EQU
(iii) LTORG

 (iv) START & END

Answer

(i) ORIGIN
The syntax of this directive is
 ORIGIN <address spec>
where <address spec> is an <operand spec> or <constant>. This directive
indicates that location counter (LC) should be set to the address given by
<address spec>. The ORIGIN statement is useful when the target program
does not consist of consecutive memory words. The ability to use an
<operand spec> in the ORIGIN statement provides the ability to perform LC
processing in a relative rather than absolute manner.

(ii) EQU
The EQU statement has the syntax
 <symbol> EQU <address spec>
where <address spec> is an <operand spec> or <constant>.
The EQU statement defines the symbol to represent <address spec>. This
differs from the DC/DS statement as no LC processing is implied. Thus EQU
simply associates the name <symbol> with <address spec>.

(iii) LTORG
The LTORG statement permits a programmer to specify where literals should
be placed. By, default assembler places the literals after the END statement.
At every LTORG statement, as also at the END statement, the assembler
allocates memory to the literals of a literal pool. The pool contains all literals
used in the program since the start of the program or since the last LTORG
statement.
The LTORG directive has very little relevance for the simple assembly
language. The need to allocate literals at intermediate points in the program
rather than at the end is critically felt in a computer using a base displacement
mode of addressing.

(iv) START & END

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

AC59/AT59 OPERATING SYSTEMS & SYSTEMS SOFTWARE JUNE 2013

© IETE 14

The START directive indicates that the first word of the target program
generated by the assembler should be placed in the memory word with address
<constant>.
 START <constant>
The END directive indicates the end of the source program. The optional
<operand spec> indicates the address on the instruction where the execution
of the program should begin.

 END [<operand spec>]

Q9 (a) Consider the following program segment:
 main()
 {
 int i, j;
 float x, y;
 y = 10;(A)
 i = 5;
 x = y + i;(B)
 }
 Explain what action the compiler must take during the compilation of

assignment statements marked as (A) and (B)?

Answer
While compiling the first assignment statement, the compiler must note that ‘y’ is a real
variable; hence every value stored in ‘y’ must be a real number. Therefore it must
generate code to convert the value ‘10’ to the floating point representation.
In the second assignment statement, the addition cannot be performed on the values of ‘y’
and ‘i’ straightaway as they belong to different types. Hence compiler must first generate
code to convert the value of ‘i’ to the floating point representation and then generate code
to perform the addition as a floating point operation.

Q9 (b) What are the features used by compiler during implementing function

calls?

Answer
The compiler uses a set of features to implement function calls. These are described
below:

• Parameter list: The parameter list contains a descriptor for each actual parameter
of the function call. The notation Dp is used to represent the descriptor
corresponding to the formal parameter p.

• Save area: The called function saves the contents of CPU registers in this area
before beginning its execution. The register contents are restored from this area
before returning from the function.

• Calling conventions: These are execution time assumptions shared by the called
function and its caller(s). The conventions include the following:

a) How the parameter list is accessed.
b) How the save area is accessed.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

AC59/AT59 OPERATING SYSTEMS & SYSTEMS SOFTWARE JUNE 2013

© IETE 15

c) How the transfers of control at call and return are implemented.
d) How the function value is returned to the calling program.

Most machine architectures provide special instructions to implement items c) and
d).

Q9 (c) Give an account of the issue pertaining to compilation of “if” statement in

C language?

Answer
Control structures like if cause significant semantic gap between the PL domain and the
execution domain because the control transfers are implicit rather than explicit. This
semantic gap is bridged in two steps as follows:

Step 1: Control structure is mapped into an equivalent program containing
 explicit

goto’s. Since the destination of a goto may not have a label in the source
program, the compiler generates its own labels and put them against the
appropriate statements. For example, the equivalent of (a) given below is (b)
where int1, int2 are labels generated by compiler for its own purposes.

if (e1) then

S1;
else

S2;
S3;
(a)
if (e1) then goto int1;
S2;
goto int2;

 int1 : S1;
 int2 : S3;
 (b)

 Step 2: These programs are translated into assembly programs.

The first step need not be carried out explicitly. It can be implied in the compilation
action.

Text Book

Systems Programming and Operating Systems, D. M. Dhamdhere, Tata McGraw-
Hill, Second Revised Edition, 2005

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

