- Student Bounty Com
- **Q.2** a. Perform the following conversions:
 - (i) $(2496)_{10} = (?)_8$
 - (ii) $(CF3D)_{16} = (?)_{10}$
 - (iii) $(11011.0111)_2 = (?)_{10}$

Answer:

- (2496) = 2496/8 is 312 with remainder 0 312/8 is 39 with remainder 0 39/8 is 4 with remainder 7 is O with remainder 4 Result (4700)₈ ii. $(CF3D) = 12x16^3 + 15x16^2 + 3x16^1 + 13x16^0$ $=(53053)_{10}$ iii. $(11011.0111)_2 = 011\ 011\ .\ 011\ 100$ (3 3 . 3
 - b. Draw the functional diagram of a digital computer and explain the function of each block.

Answer: Page Number 16 of Text Book

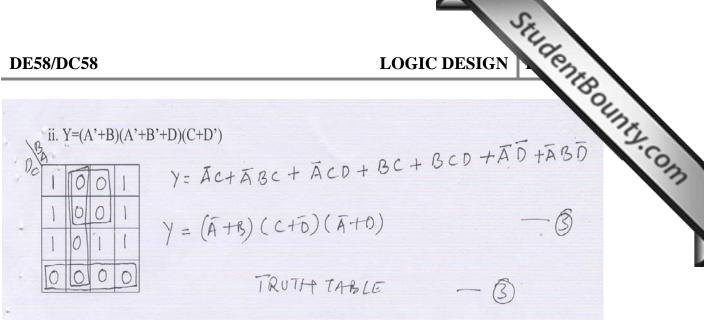
c. Give examples of parallel and serial transmission in digital systems.

Answer: Page Number 13-14 of Text Book

Q.3 a. What is the need to minimize a Boolean expression? What are the methods used to achieve these.

Answer:

To reduce the hardware requirement, resulting in the same truth table. Various methods:


- Using theorems and postulates I.
- II. K-Map
- Tadular forms III.
- b. Minimize the following Boolean expressions and write the truth tables to show that the minimized expressions will produce the same output as the expanded expressions.
 - (i) $F = m_0 + m_2 + m_5 + m_7 + m_8 + m_{10} + m_{13} + m_{15}$
 - (ii) y = (A' + B)(A' + B + D)(C + D')

Answer:

- b. Minimize the following Boolean expressions and write the truth tables to show that the minimized expressions will produce the same output as the expanded expressions.
- i. $F=m_0+m_2+m_5+m_7+m_8+m_{10}+m_{13}+m_{15}$ (7)

LOGIC DESIGN

Q.4 a. Draw the logic diagram of eight bit serial in/parallel out shift register and explain its operation.

Answer: Page Number 443, 444 & 445 of Text Book

b. What is meant by multiplexer? List out its various applications.

Answer: Page Number 443, 444 & 445 of Text Book

Q.5 a. Distinguish between asynchronous and synchronous Flip Flops. Convert an asynchronous RS flip flop into synchronous latch.

Answer: Page Number 176-181 of Text Book

- b. Design a decade counter using JK Flip Flops and draw its timing diagram. **Answer:** Page Number 299 of Text Book
 - c. What is the need of Schmitt trigger devices, explain with waveforms.

Answer: Page Number 214-215 of Text Book

Q.6 a. Build a Full Adder using two Half Adders and prove that the addition of two numbers results in subtraction when 2's complement is used.

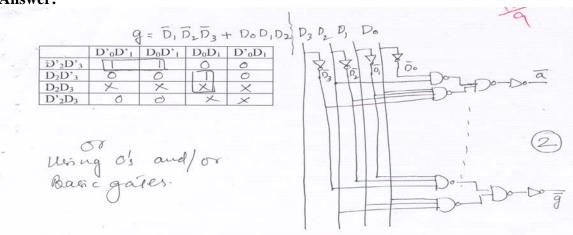
Answer: Page Number 264-265 of Text Book

b. If a single bit Full Adder takes 8sec for addition, calculate the total addition time taken to add two numbers having hundredth weight. Suggest a method of speeding up the addition.

Answer:

Ans: td= 8nsec Hundredth weight addition of decimal requires 3 4bit parallel adders. Thus total delay is sum of delays of each of the adders Which will amount to (4x3)x8 = 96nsec

To reduce the delay Carry look ahead circuit to be used. (Explanation)


0.7 a. Design a seven segment decoder that is required to drive an active low seven segment display.

Answer:

)E58/D	C58					LOGIC DESIGN TECRNICATION TO THE PROPERTY OF T						
swer:											100	
D3 0 0 0 0 0 0 0 0 0 0	D2 0 0 0 0 1 1 1 1 0	D1 0 0 1 1 0 0 1 1 0	D0 0 1 0 1 0 1 0 1 0 1	a' 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	b' 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0	c' 1 0 1 0 1 0 0 0 0 0 0	0 0 0 0 1 0	1 1 0 1 0 1	1 0 0 0 1 0	0 0 0 0 1 0	2	
D' ₂ D' ₃ D ₂ D' ₃ D ₂ D ₃ D' ₂ D ₃	D' ₀ D' ₁	D ₀ D' ₁ O ×	D ₀ D ₁ D ₀ O ×	D' ₀ D ₁	D' ₂ D D ₂ D' D ₂ D ₃ D' ₂ D	'3 II 3 O	D' ₁ D ₀ l	D' ₁ D ₀ l	D ₁ D' ₀	D_1	- DOD, 12 C	
D' ₂ D' ₃ D ₂ D' ₃ D ₂ D ₃ D' ₂ D ₃ D' ₂ D' ₃ D ₂ D' ₃ D ₂ D' ₃ D ₂ D ₃ D' ₂ D ₃	D' ₀ D' ₁	D ₀ D' ₁ 0 ×	0 0 X X	D' ₀ D ₁ 0 × ×	D'2D D2D' D2D3 D'2D D2D' D2D' D2D3 D'2D3	'3	D' ₁ D ₀ I	$\begin{array}{c c} D'_1 & D_0I \\ D & \\ D & \\ \hline D'_1 & D_0I \\ D'_1 & D_0I \\ \hline D & \\ D & \\ \hline D & \\ D &$	D ₁ D' ₀	D ₁	6D,D2	

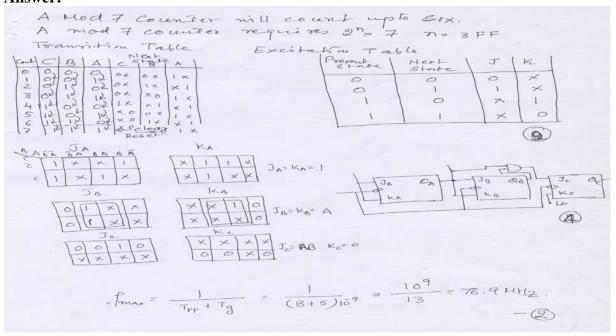
b. What are the advantages and disadvantages of a synchronous counter over an asynchronous counter?

Answer:


Stilldent BOUNTS, COM c. How many AND gates are required to decode completely all of the states MOD-32 binary counter? What are the inputs to the gate that decodes for the

Answer: Page Number 391 of Text Book

count of 21?


DE58/DC58

Q.8 a. How will you read and write into a 16×4 RAM? Draw a schematic of this RAM and explain the process.

b. Design a mod 7 synchronous counter and calculate its maximum frequency of operation if the flip flop delay time is 8nano sec. and gate delay time is 5 nano sec.

Answer:

- **Q.9** Explain the principle of the following:
 - (i) Magnitude Comparator
 - (ii) CPU and memory interface
 - (iii) Johnson Counter
 - (iv) DRAM

Answer:

- (i) Page Number 524-527 of Text Book
- (ii) Page Number 630-632 of Text Book
- (iii) Page Number 342-344 of Text Book
- (iv) Page Number 671-674 of Text Book

TEXT BOOK

Digital Systems – Principles and Applications, Ronald J Tocci, Neal S. Wildmer, Gregory L. Moss, Ninth Edition, Pearson Education, 2008