Subject: LOGIC DESIG Code: DE58/DC58

Diplete - ET/CS

Time: 3 Hours

DECEMBER 2013

Student Bounty.com

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.

Q.1	Choose the correct or the best alternative in the following:		(2×10)	
	a. A memory that requires refreshing is			
	(A) ROM (C) DRAM	(B) SRAM (D) Flash RAM		
	b. The hexadecimal representation of 177 is			
	(A) 112 (C) 111	(B) B1 (D) 2D		
	c. BCD code 11001011 represents the decimal number			
	(A) 190 (C) 52	(B) 203 (D) 5		
	d. The sum of product of $(x + y' + c)(x' + y' + c)$ is			
	$(\mathbf{A}) \ \mathbf{y'} + \mathbf{c}$	(B) xy' + cx'		
	(C) $y' + xc$	(D) x'y + y'c		
	e. Two RS flipflops connected sequentially with complementary clocks forms a			
	(A) two bit shift register (C) JK flip flop	(B) two bit counter(D) MS flip flop		
	f. A 8 bit synchronous counter using flip-flops each of propagation delay 12 nsec and gate delay of 8nsec, provides a transition delay of		ec	
	(A) 68nsec	(B) 104nsec		
	(C) 20nsec	(D) 48nsec		

- Code: DE58/DC58 A parallel binary adder can be made faster by
 - (A) using serial adder configuration (B) gated input configuration
- Student Bounts, com (C) carry look ahead configuration (D) complementary addition system
- h. A three bit counter divides the clock by____
 - **(A)** 3

(B) 7

(C) 8

- **(D)** 2
- i. Johnson counter is realized using a
 - (A) Ripple Counter
- (**B**) Serial Adder

(C) Multiplexer

- (D) Shift Register
- j. Parallel to serial conversion requires
 - (A) Counter

(B) Multiplexer

(C) Shift Register

(D) Decoder

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. Perform the following conversions: **(6)**

- (i) $(2496)_{10} = (?)_8$
- (ii) $(CF3D)_{16} = (?)_{10}$
- (iii) $(11011.0111)_2 = (?)_{10}$
- b. Draw the functional diagram of a digital computer and explain the function of each block. **(6)**
- c. Give examples of parallel and serial transmission in digital systems. **(4)**
- a. What is the need to minimize a Boolean expression? What are the methods 0.3 used to achieve these. **(4)**
 - b. Minimize the following Boolean expressions and write the truth tables to show that the minimized expressions will produce the same output as the expanded expressions. **(12)**
 - (i) $F = m_0 + m_2 + m_5 + m_7 + m_8 + m_{10} + m_{13} + m_{15}$
 - (ii) y = (A' + B)(A' + B + D)(C + D')
- a. Draw the logic diagram of eight bit serial in/parallel out shift register and 0.4 explain its operation. **(8)**
 - b. What is meant by multiplexer? List out its various applications.
- **(4)**

			SIL
	(Code: DE58/DC58 Subject: LOGI	IC DESIG
	c.	Explain briefly with the help of waveforms, how propagation Ripple Counters?	IC DESIC on delay occurs in (4) ops. Convert an
Q.5	a.	Distinguish between asynchronous and synchronous Flip Flo asynchronous RS flip flop into synchronous latch.	ops. Convert an (6)
	b.	Design a decade counter using JK Flip Flops and draw its tin	ning diagram. (6)
	c.	What is the need of Schmitt trigger devices, explain with way	veforms. (4)
Q.6	a.	Build a Full Adder using two Half Adders and prove that the numbers results in subtraction when 2's complement is used.	
	b.	If a single bit Full Adder takes 8sec for addition, calculate the time taken to add two numbers having hundredth weight. Su of speeding up the addition.	
Q.7	a.	Design a seven segment decoder that is required to drive ar segment display.	n active low seven (8)
	b.	What are the advantages and disadvantages of a synchronou asynchronous counter?	us counter over an (4)
	c.	How many AND gates are required to decode completely al MOD-32 binary counter? What are the inputs to the gate the count of 21?	
Q.8	a.	How will you read and write into a 16×4 RAM? Draw a RAM and explain the process.	schematic of this (8)
	b.	Design a mod 7 synchronous counter and calculate its maxim operation if the flip flop delay time is 8nano sec. and gate del sec.	*
Q.9		Explain the principle of the following: (i) Magnitude Comparator (ii) CPU and memory interface	(4×4)

(iii) Johnson Counter

(iv) DRAM