Q. 2 a. How integrated resistors are fabricated? Explain diffused resistor method in detail?
Answer:
ANS 2 (a) The basic technique for obtaining a resistor in integrated circuit is by utilising the bulk resistance of a defined whine of semiconduder region.
Diffused Resistor: In this method, resistor is formed in one of the isolated regions of epitaxial lager during base or emitter diffusion common to bipolar transistor fabincation This type $o f$ visiston is very economical. The value g the resistance depends upon the surface geometry. That is, length, width and ripon the diffused impurity motile. In this context, a very useful quantity sheet Resistance is defined as diffused layers are vary thin. The resistance of the sheer of materiel combe unitten as
of a materiel $R_{s}=\frac{P L}{L_{t}}=\frac{P}{L}$. if Consider the square $L \times L$ sectional area. $A=L x t$ resist, thickness t, and clos shat of mataicen resistors can be expresislance of these q the sheet resibtanie R_{S} and surface dimensions L and w
$R=P \frac{L}{\omega_{t}}$. where ratio L / w is called the uspect ratio of the surface geomeliy and is, therfere, the effective number of square contained in the resistor.

Sheet Resistance

thafore the effective number of square contained in the resistor. The base resister in the range of $20 \Omega \mathrm{t} 30 \mathrm{kN}$ cal be early fabnoled
due te medium resistinly p type base rejoices
b. Why aluminium is usually used for metallization of most ICs?

Answer:
(b) (i) It is relatively a good conductor
(ii) It is easy ti f deposit aluminium films using vacuum deposition
(iii) Aluminium make good mechanical bonds isth plicon
(IV) Aluminium forms low resistance, non-rectifying contact with p type silicon and the heavily
doped n type silicon doped n type silicon
c. Explain the self aligning property of a polysilicon gate MOSFET

Answer:
(c)) The polysiliion-gate provides self alignment of the gate with the source and deaim. In the conventional metal gate slvictive, the guile electrode is normally designed to overlap the edges of the source and derain region by about 5 um to aroid any masking eras. This, however, results in Small overlap capacitance C gs between gate G and source S and Le between gate 4 and deain D These capacilances are q aden $q 1$ to 3 pF and lower the speed of operation and increases the pourer consumption. The silicon gate due to self aligning property eliminates there capacitances
Q. 3 a. Explain the need for coupling and bypass capacitors in transistor circuits, and draw AC Equivalent circuit of CE amplifier.

Answer:

Ans: 3 The Capacitor C_{i} is used to couple the signs circuit to direct curvinis, r_{s} doesnot affect the level of V_{B}. Casicitor C_{1} bename as a short circiet for the $a c$ siginel s_{r} so that the sigiop vorlage (r_{s}) appeases at the transistor base as showmen fig. In this case the sigiel is said to be $a c$ coupled to the circuit input and c_{c} is
the cirait bias conditions ill be altered. Due to coupling cappiciter the supply voltage at the travistor collector terminable is reduced from cacti $\quad V=\frac{V_{c c} \pm R_{L}}{R_{c}+R_{L}}$ and the collector resistance becomes

$$
R=R_{c} \| R_{c}
$$

This has the effect of altering The cincint $d c$ load line Seceningat $a c$ signal so that there is no feed back from the transislis collector to the base when C_{B} is replaced w_{i} h a shost-circiti R_{B}, and $R_{B_{2}}$ appease in parallel isth the circuit input and artput respectively. Bland problem of $a c$ degeneration is eliminated by the emitter bypas AC Equivalent cuciul capaciles behave as shat circuits to ac signals so in the ac equirdent crecint for in trarisiser circuit all capailers must be replaced in th short incuits because the $d c$ supply voltage is not affected by the ac sigiab Also all porer supplies hove loge value capacilas at the output torminab, and these used offer shots circuits to ac signals.' Substituting shat cincuts in place of all the power supply and all capacitors: in

if RL is present, it
with R_{c} in the $a c$ equirlert circinus
b. Use the simplified h-parameter model to derive equations for the current gain A_{i}, the input impedance $R_{i n}$, the gain A_{v} and the output impedance $\mathrm{R}_{\text {out }}$ for the emitter follower circuit shown in Fig.2. Calculate the value of these parameters, assuming $\mathrm{h}_{\mathrm{ie}}=1100 \Omega, \mathrm{R}_{\mathrm{e}}=10 \mathrm{~K} \Omega, \mathrm{~h}_{\mathrm{fe}}=50$ and $\mathrm{R}_{\mathrm{s}}=1 \mathrm{k} \Omega$

Fig. 2
Answer:
Sb Equiralat circuit of diagram 's

$$
A v=\frac{v_{0}}{v_{i}} \approx \frac{h f e i_{b} R E}{h_{i e i_{b}}+R_{E}^{h} p_{e} i_{b}}
$$

$$
=\frac{h_{f e} R_{E}}{h_{i} e+h f_{e} R_{E}}=1-\frac{\text { hie }}{R_{i n}^{\prime}}
$$

$$
R_{i n}=\frac{v_{i}}{i_{b}} \approx \frac{h i_{b}+h i_{e} i_{b} \dot{R}_{E}}{i_{b}}=\text { hie }+h f e R_{E} \rightleftharpoons h f e R_{E}
$$

$$
\text { Rout }=\frac{v_{0}(o c)}{i_{0}(s c)}=\frac{i_{b}\left(R_{s}+h i e\right)}{h f_{e} i_{b}}=\frac{R_{s}+h i e}{h f_{e}}=
$$

$$
A_{i} \simeq 50 \quad R_{i_{n}}=1.1 \mathrm{kn}+50 \times 10 \mathrm{kn} \simeq 500 \mathrm{kn}
$$

$$
\begin{aligned}
& A_{v}=1-\frac{1100}{50 \times 10^{3}}=0.98 \quad R_{\text {out }}=\frac{11 k \Omega+1.1 \mathrm{kn}}{50}=42 n \\
& R_{\text {out }}^{\prime}=R_{\text {out }} / 1 R_{E}=10 \mathrm{k} \Omega \| 42 \Omega=42 \mathrm{n}
\end{aligned}
$$

Q. 4 a. Draw and explain the transfer characteristics of JFET. List the advantages of JFET.
Answer:

49 The transfer characlustics for an n channel JFET are a plot of ID rosin $V_{G S}$. The gate sauce voluge of a FET contrast the level of the deain current, so the parfer charecterstics is show-in fig.

(1)
maintained contort, G Gs is in adjusted in convenient step and $^{(2)}$

cherecterslic extends' from $I_{D}=I_{D S S}$ at $V_{A S}=0$ to $I_{D}=0$ at $V_{G S}=V_{P}$.fig 1 shows, that the drain-sonce voltage is $\hat{V}_{p} \leftarrow V_{G S}$ correop andip level $g V_{G S}$ and I_{D} are recorded. The charecletis shows that as $-V_{G S}$ is incoesed I_{D} is progressively reduced from IDs at $V_{G S}=0$ to $I_{D}=0$ at $V_{G S}=-V_{P}$. The painfer characteristic. for a FET can be derived from the drain characteristics. A line is chaw vertically on the drain charecterstics to represent a consular vas lend
b. The constant current circuit shown in Fig. 3 uses a JFET whose operation is described by the equation
$\mathrm{I}_{\mathrm{D}}=\mathrm{I}_{\mathrm{DSS}}\left(1-\mathrm{V}_{\mathrm{GS}} / \mathrm{V}_{\mathrm{P}}\right)^{2}, \mathrm{I}_{\mathrm{DSS}}=8 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{p}}=4 \mathrm{~V}$
(i) Draw the equivalent circuit as an amplifier
(ii) Calculate the required value of R to give a current of 0.5 mA
(iii) If the FET drain- source resistance r_{ds} is equal to $50 \mathrm{~K} \Omega$ at $\mathrm{I}_{\mathrm{D}}=0.5$ mA , determine the incremental resistance of the circuit for the value of R calculated in (ii)

Fig. 3

Answer:

ib:

equivalent
vo circuit as an amplifier
(ii) from the equation for I_{D}

$$
\begin{aligned}
& 0.5 \times 10^{-3}=8 \times 10^{-3}\left(1+\frac{V_{a S}}{4}\right)^{2} \therefore V_{G S}=-3 \mathrm{~V} \\
& \text { Rut }
\end{aligned}
$$

But $\quad R=\frac{-V_{4 S}}{I D}=\frac{3 \mathrm{~V}}{0.5 \mathrm{~mA}}=6 \mathrm{kn}$
(iii) The output resistance is found from $R_{0}=\frac{v_{0}(o c)}{i_{0}(s c)}$ with ontprit opencirciect $v_{0}(o c)=-g_{m} v_{i} r_{d} d s$ isth ontpint short cuccint

$$
\begin{aligned}
v_{g s} & =v_{i}+R_{i}(s c) \quad \text { But } i_{0}(s)=\frac{-g_{m} v_{g s} r_{d s}}{R_{f} r_{d s}} \\
i_{0}(s c) & =\frac{-g_{m} r_{d s}}{R+r_{a s}}\left(v_{i}+R_{i_{0}}(s c)\right) \\
i_{0}(s c) & =\frac{g_{m} r_{d s} v_{i}}{R+\left(1+g_{m} R\right) r_{d s}}=\frac{v_{0}(o c)}{i_{0}(s c)}=R+\left(1+g_{m} R\right) i_{d s} \\
& =356 k n
\end{aligned}
$$

Q. 5 a. Draw and explain the circuit of complementary emitter follower.

Answer:
Tho BJTS connected to function as RL, emitter foll aver whereas ore is mph and other is pap, the deices are selected t have similes parameters, so they are complementary transistors. The cieciit is termed as a complementary emitter follower, Al singerenta. complemalay emoter follower have simile le signs applied stmultaneously to both deice bases as shourin f os Transistor Q_{1} conducts duping the positive half cycle of the signal and it pulls 1 e output voltage up to follow the input. Diving this tine φ_{2} baxe-emislles

Junction is reverse biased．for the duration of the negative Rolf cycle of the imprint φ_{1} base emitter junction is revenged and CP_{2} conducts，pulling the output dour to follow the import．Thus，the complementary emitter follower is a large scale ciecint isth thad low andput mpedanice．Another advantage is．this circint does raf require transformer．This saves on weight and cost

b．Draw the circuits of opto－coupler with SCR and Triac and briefly explain these circuits．
Answer：
（a）Darlington autpont type：the output stage privies much higher CTR them a BJT photo painsistios output stage but it also hasa．slower response time

（a）Darlington outport $301-\ldots$
（b）Q（c）SCR \＆triac type are a light activated SCR and light activated triad Epee．They are used with the kind of conturl circifts where Thigh electrical isolation between the triggeing cir int and the control deice is an adtulionel rephisernent $C T R$ doessort apply to SCR and Triad output stages instead，the LED current needed to trigger the thyesister is of interest．

Tヵベメ outpour
c. Show that maximum collector efficiency of class A transformer coupled power amplifier is 50%.

Answer:

 the collector ck is that of the primary winding in us pantiormen. The primary resistance has a beng small
value and is aesumad zero. Therifere dc load line is a vertical line rising from $v_{c c}$. urban signal is popped the collector curved wile vary about the operating point Q
In order to get maximum $a c$ power output, the peak
value of collector current due to signal alone should be equal to the zero signal collector current Ic.
Ding the pear of the positive half cycle o the signal, the
Total current is $2 I_{c}$ and $v_{c e}=0$. During the negate peak of the signet, the collectes currant is zeno and $\mathrm{v}_{\mathrm{ce}}=2 \mathrm{Vcc}$
\therefore Peak th peak collector-emitter vetogeis

$$
v_{c e}(p-p)=2 v_{c c}
$$

peak to peak collector cured $i c(p-p)=2 L_{c}$

$$
=\frac{V_{c e}(p-p)}{R^{\prime}}=\frac{2 V_{c c}}{R^{\prime} L}
$$

Where R_{L}^{\prime} is the reflected varro q arad R_{L} and el appears in the primary of the transformer of $n\left(=N_{p} / N_{q}\right)$ is the tens ratio of tole trausforien then $R_{C}^{\prime}=n^{2} R_{L}$
$d c$ power input $P_{d c}=V_{c c} I_{C}=I_{c} R_{i L}$
Max. ac outpoint power Pac $($ max $)=\frac{V_{c e}(P-p)^{\times i}{ }^{\circ}(a-b)}{8}$
$=\frac{2 V_{c c} \times 2 I_{c}}{8}=\frac{1}{2} V_{c c} I_{c}=\frac{1}{2} I L^{2} R^{\prime}$

Q. 6 a. What is the need of negative feedback in OPAMP?

Answer:
of（A）An op－anp is almost always operated in in ne le feedback be a part of the autpitt is feedback in phase opposition to the input．with negative feedback，the voltage gain can be reduced and controlled so that $O P$－amp can function as linear amplifies．In addition to pounding a controlled and stable gains， negative feedback also provides for contr of the impart and artput impedance and amplifier banduidin

b．Define the following parameter and give their values for IC 723
（i）Input bias current
（ii）CMMR
（iii）Output resistance
（iv）Input offset voltage
Answer：
（b）［a）部 The average of the currents enteing into（ - ）input and (t) minuit terminals g an op－amp．Its value is 500 mA for 741 C
（b）CMMR is typically $90 d B$ ．
（c）It is the resistance between the output terminal q the op－amp and the ground．It $575 \geqslant$ for the $741 c o p-\operatorname{anc} p$
（d）It is the voltage that must be applied between the mpont terminals of an Op－ainp to nullify the aitput for 741C，the maximum value is 6 mV
c. For the differentiator circuit shown in Fig.4, find:
(i) the expression for the output voltage
(ii) the output voltage for the given input.

Fig. 4

Answer:
for the differentiation, the output voltage is givens y

$$
\begin{aligned}
v_{0} & =-R_{c} \frac{d v_{i}}{d t}=-(100 k n \times 10 \mu \mathrm{~F}) \frac{d v_{i}}{d t} \\
& =-\left(100 \times 10^{3 n}\right) \times\left(10 \times 10^{-6} \mathrm{~F}\right) \frac{d v_{i}}{d r}=-\frac{d v_{i}}{d r}
\end{aligned}
$$

(ii) Since the input wottge is stringhil live between 0 f 0.2 sec the output voltage is $\quad v_{0}=\frac{-d v_{c}}{d t}=\frac{(1-0)}{0.2}=-5 \mathrm{~V}$
Therefore between ot 0.2 s the output voltage is constant or -5 V for $t>0.25$ the input is constant so inst output vorlage bs zens.

Q. 7
a. Draw and explain Sample and Hold circuit using OPAMP. Draw input and output waveform of the circuit.

Answer:

Ans 7(a) A sample and hold ciccit samples an upset signal and holds on to its last sampled value until the impute is sampled again. The circuit show in big

The n channel E-MOSFET works as a switch and is controlled by the control voltage V_{c}. and the capacitor C stores the charge. The analog signal v_{i} to be sampled is applied to the drain of E-MOSFET and the control wetage v_{C} is applied to its gate. when v_{c} is positive the E-MOSFET twins on and the copaculer C charges to the unstantareious value of input v_{i} isth a tire constant $\left[R_{0}+\right.$ rDS $\left.^{\prime}(o n)\right] C$. there R_{0} is the output renstance $q^{\text {the }}$ voltage follower A_{1} and $r_{\Delta S}(o n)$ is the resistance $g^{\text {the }}$ MOSFET when on. Thus the muppet collage v_{i} appears anoles the copacaler C and then at the artput through the voltage follower. A_{2}. when v_{c} is zr the $\in \operatorname{MOSFE}$ is off. The capaceter C is now facing the nigh input impedance of the voltage follower A_{2} and hence cannot discharge. The capaciler holds the village acloesict. The line pend T_{H} of v_{c} ding which the vetage avos the capacitor is held content is called hold period

Spout and ant put waveforms
b. For the circuit shown in the Fig. 5 assuming that the input current is negligible, show that $v_{0} / v_{i}=f\left(R_{2}, R_{1}, A\right)$ and that it may be approximately to $v_{0} / v_{i}=-\left(R_{2} / R_{1}\right)$. Explain the purpose of R_{3}

Fig. 5
Answer:
$7(b)$ Let the non- investing input be vg. cuverel in R_{1} be i_{1}, and the current in R_{2} be i_{2}

$$
\therefore i_{1}=\frac{v_{1}-v_{g}}{R_{1}} \text { and } i_{2}=\frac{v_{g}-v_{0}}{R_{2}}
$$

But since auplyfiei input current is zoo $i_{1}=i_{2}$

$$
\therefore \frac{v_{i}-v_{g}}{R_{1}}=\frac{v_{g}-v_{0}}{R_{2}}
$$

Now $v_{0}=-A V_{g}$, where A is the spenloop gains

$$
\begin{aligned}
& \therefore \frac{v_{i}+\frac{V_{0}}{A}}{R_{1}}=\frac{-\left(\frac{V_{0}}{A}+v_{0}\right)}{R_{2}} \\
& \therefore \frac{v_{0}}{V_{2}}=\frac{-R_{2}}{R_{1}}\left(\frac{1}{1+\frac{R_{1}}{A R_{1}} R_{2}}\right) \text { for large value gA } \frac{v_{0}}{V_{l}} \simeq \frac{R_{2}}{R_{1}}
\end{aligned}
$$

The propose $g R_{3}$ is to reduce the effect of import offer volege due to input bias current

$$
\therefore R_{3}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

Q. 8 a. What are the applications of comparators? Explain the operation of zero crossing detector.

Answer:
8(a) Various important applications of comparator are
(i) Zero crossing detector (i) Window detector
(iii) Tine meeker generator (iv) pulse meter
(V) Level detector
(vi) Square ware genarativ

Lew loosing detector: When one of the inpint of conpazater is connected to ground. It is known as zen closing detector because output changes when input crosses $O W$ The cirkiat and waveform shown in fig

When the impart signal is positve going, the output is driven to positive maximum value. When the input crosses the zero axis and begins to go negative, the out pout is driven to negative maximum value
Q. $9 \quad$ Write Short notes on any TWO of the following:
(i) 723 general purpose voltage regulator
(ii) Flash type A/D convertor
(iii) IC voltage regulator

Answer:
q(a) current Boosting. The maximums current
that 723 IC regulates com prone is 140 mA . which 5 not sufficient for many application and it is possible to boost the current level simply by adding a boost Transisticr Q1 to the voltage regulator. The collector current of the pan transistor Q_{1} comes from the Unregulated $d c$ supply The ontfont curet from v_{0} terminal dives the base of the

9 (b) If is the fastest and most expensive type $A D C$ 3 bit A / D converter shown in 6 gig commit of a resistive dwider network, 8 op -amp comparator and 8 line $t 3$ encoder Analog V_{0}

value, the voltage levels available at the nodes are equally divided between the ref voltage v_{R} and ground The purses of the circuit is to comparative analogupnt voltage v_{a} isth each of the node vetages. The circuit has the advantage of nigh speed as the conversion take place simultaneously rather than sequaintilly and dis advantage that the number q comparators required almost donlles'tor each added bit for ba ge wee of n, the move complex is the panty encoder

Text Books

1. Electronic Devices and Circuits, Fourth Edition, David A Bell, PHI (2006).
2. Linear Integrated Circuits, Revised Second Edition, D. Roy Choudhury, Shail B. Jain, New Age International Publishers.
