DipIETE - ET/CS

Time: 3 Hours

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.
NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. The value of the limit $\underset{\mathrm{x} \rightarrow 0}{\operatorname{Lt}} \frac{\sin \mathrm{x}^{\circ}}{\mathrm{x}}$ is equal to
(A) π
(B) 1
(C) $\frac{\pi}{180}$
(D) 0
b. The value of definite integral $\int_{0}^{\pi / 2} \sin ^{7} x d x$ is equal to
(A) $\frac{14}{35}$
(B) $\frac{16}{35}$
(C) $\frac{17}{35}$
(D) $\frac{11}{35}$
c. The complementary function for the differential equation $\frac{d^{2} x}{d t^{2}}+\frac{g}{\ell} x=\frac{g}{\ell} L$ where $\mathrm{g}, \ell, \mathrm{L}$ are constants, is given by
(A) $\mathrm{c}_{1} \cos \sqrt{\frac{\ell}{g}} \mathrm{t}+\mathrm{c}_{2} \sin \sqrt{\frac{\ell}{g}} \mathrm{t}$
(B) $c_{1} \cos \sqrt{\frac{g}{\ell}}$ it $+c_{2} \sin \sqrt{\frac{g}{\ell}}$ it
(C) $\mathrm{c}_{1} \cos \sqrt{\frac{g}{\ell}} \mathrm{t}+\mathrm{c}_{2} \sin \sqrt{\frac{g}{\ell}} \mathrm{t}$
(D) $\mathrm{c}_{1} \cos \sqrt{\frac{\mathrm{~g}}{\ell}} \mathrm{t}+\mathrm{ic}_{2} \sin \sqrt{\frac{\mathrm{~g}}{\ell}} \mathrm{t}$
d. The principal argument of -2 i is equal to
(A) $-\pi / 3$
(B) $-\pi / 2$
(C) $\pi / 2$
(D) $\pi / 3$
e. If $Z=1+i \sqrt{3}$, then $Z^{2}+4$ is equal to
(A) $\mathrm{Z} \sqrt{3}$
(B) $3 Z$
(C) $2 Z$
(D) 4 Z
f. $L\{4 \cos 5 t\}$ is equal to
(A) $\frac{5 \mathrm{~S}}{\mathrm{~S}^{2}+16}$
(B) $\frac{2 \mathrm{~S}}{\mathrm{~S}^{2}+16}$
(C) $\frac{4 \mathrm{~S}}{\mathrm{~S}^{2}+16}$
(D) $\frac{4 \mathrm{~S}}{\mathrm{~S}^{2}+25}$
g. $\quad L^{-1}\left\{\frac{5}{S+3}\right\}$ is equal to
(A) $3 e^{-5 t}$
(B) $5 e^{3 t}$
(C) $5 e^{-3 t}$
(D) $3 e^{5 t}$
h. The period of the function of $|\cos x|$ is equal to
(A) π
(B) 2π
(C) 3π
(D) 4π
i. If $\vec{a}=3 i+2 j+9 k$ and $\vec{b}=i+\lambda j+3 k$ are perpendicular to each other then λ is equal to
(A) -15
(B) 27
(C) -27
(D) 15
j. The voltage and current of a circuit are given by the complex number $3+4 \mathrm{j}$ and $2-5 \mathrm{j}$ respectively then complex number of the impedance of the circuit is equal to
(A) $\frac{14}{29}-\frac{23}{29}$ j
(B) $\frac{7}{29}-\frac{15}{29}$ j
(C) $\frac{7}{29}+\frac{15}{29} \mathrm{j}$
(D) $\frac{-14}{29}+\frac{23}{29}$ j

Answer any FIVE Questions out of EIGHT Questions.

Each question carries 16 marks.

$$
\begin{equation*}
\operatorname{LT}_{x \rightarrow 0} \frac{\sin 2 x+\sin 6 x}{\sin 5 x-\sin 3 x} \tag{8}
\end{equation*}
$$

b. If f is a real function defined by $f(x)=\frac{x-1}{x+1}$ then prove $\mathrm{f}(2 \mathrm{x})=\frac{3 \mathrm{f}(\mathrm{x})+1}{\mathrm{f}(\mathrm{x})+3}$
Q. 3 a. Find the volume of the right circular cone formed by the revolution of a right angled triangle about a side which contains the right angle.
b. Find the length of the curve $y^{2}=x^{3}$ from origin to the point $(1,1)$.
Q. 4 a. If n is a positive integer then show that $(\sqrt{3}+i)^{n}+(\sqrt{3}-i)^{n}=2^{n+1} \cos \frac{n \pi}{6}$ where $\mathrm{i}=\sqrt{-1}$
b. A resistance of 20 ohms and inductance of 0.2 H and a capacitance of $100 \mu \mathrm{~F}$ are connected in series a cross 220 Volt, 50 cycle/sec main. Determine:
(i) impedance
(ii) current
(iii) voltage across L, R and C
(iv) power in watt
(v) power factor
Q. 5 a. A rigid body is spinning with an angular velocity of 27 radian/second about an axis parallel to $2 \mathrm{i}+\mathrm{j}-2 \mathrm{k}$ passing through the point $\mathrm{i}+3 \mathrm{j}-\mathrm{k}$. Find the velocity of the point whose position vector is $4 \mathrm{i}+8 \mathrm{j}+\mathrm{k}$.
b. Find the area of the triangle formed by the point whose position vectors are $3 i+j, 5 i+2 j+k, i-2 j+3 k$.
Q. 6 a. Solve $\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+9 y=6 e^{3 x}+7 e^{-2 x}-\log 2$
b. Solve $\frac{d^{2} y}{d x^{2}}+9 y=\sec 3 x$
Q. 7 a. Expand $f(x)=e^{x}$ in a cosine series over $(0,1)$
b. Find the Fourier Series of the function
$f(t)=\left\{\begin{array}{ccc}0 & \text { when } & -2<t<-1 \\ \mathrm{~K} & " & -1<\mathrm{t}<1 \\ 0 & " & 1<\mathrm{t}<2\end{array}\right.$
Q. 8 a. Evaluate $L\left\{\mathrm{te}^{-\mathrm{t}} \cosh \mathrm{t}\right\}$
(8)
b. Evaluate $L\left\{\begin{array}{l}\mathrm{t} \\ 0 \\ \frac{e^{t} \sin t}{t} d t\end{array}\right\}$
(8)
Q. 9 a. Show that $L^{-1}\left\{\frac{S^{2}}{S^{4}+4 a^{4}}\right\}=\frac{1}{2 a}$ (cosh at. $\left.\sin a t+\sinh a t . \cos a t\right)$
b. Evaluate $L^{-1}\left\{\log \frac{\mathrm{~s}+1}{\mathrm{~s}-1}\right\}$
(8)

