DipIETE - ET/CS

Time: 3 Hours
please write your roll no. at the space provided on each page IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. $\operatorname{lt}_{\mathrm{x} \rightarrow 0} \frac{\sin \mathrm{x}^{0}}{\mathrm{x}}$
(A) $\frac{180}{\pi}$
(B) $\frac{\pi}{360}$
(C) $\frac{360}{\pi}$
(D) $\frac{\pi}{180}$
b. If $y=\tan ^{-1}\left(\frac{\cos x}{1+\sin x}\right)$ then $\frac{d y}{d x}$ is
(A) $-\frac{1}{2}$
(B) $\frac{1}{2}$
(C) 1
(D) -1
c. $\int \cos ^{3} x d x$ is
(A) $\frac{\cos 3 x}{12}+\frac{3}{4} \cos x+C$
(B) $\frac{\sin 3 x}{12}-\frac{3}{4} \sin x+C$
(C) $\frac{\sin 3 x}{12}+\frac{3}{4} \sin x+C$
(D) $\frac{\cos 3 x}{12}-\frac{3}{4} \cos x+C$
d. If $A=\left[\begin{array}{cc}2 & 3 \\ -1 & 2\end{array}\right]$, then $A^{2}-4 A+7 I$ is
(A) $\left[\begin{array}{ll}1 & 6 \\ 2 & 4\end{array}\right]$
(B) $\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$
(C) $\left[\begin{array}{cc}-1 & 8 \\ 0 & 0\end{array}\right]$
(D) $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
e. If $\Delta=\left|\begin{array}{ccc}1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \\ \omega^{2} & 1 & \omega\end{array}\right|$ and ω is a cube root of unity, then the value of Δ is:
(A) -1
(B) 3
(C) 0
(D) 2
f. The value of $\cos 52^{\circ}+\cos 68^{\circ}+\cos 172^{\circ}$ is
(A) -1
(B) 0
(C) 2
(D) 1
g. The term independent of x in the expansion of $\left(2 x^{2}-\frac{1}{x}\right)^{12}$ is
(A) 7820
(B) 4595
(C) 8410
(D) 7920
h. If $\cos (A-B)=3 \cos (A+B)$, then $\cot A \cot B$ is:
(A) -2
(B) 2
(C) 1
(D) 3
i. The area of a triangle whose vertices are $(6,3),(-3,5)$ and $(4,-2)$ is:
(A) 24.5 sq units
(B) 23 sq units
(C) 24 sq units
(D) 26.4 sq units
j. The equation of the line which makes intercepts -4 and 5 on the axis is:
(A) $4 \mathrm{x}+5 \mathrm{y}+20=0$
(B) $4 x-5 y+20=0$
(C) $5 x-4 y+20=0$
(D) $5 x+4 y+20=0$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q. 2 a. Prove that $\cos \alpha+\cos \left(\alpha+\frac{2 \pi}{3}\right)+\cos \left(\alpha+\frac{4 \pi}{3}\right)=0$
b. Prove that $\frac{\sec 8 A-1}{\sec 4 A-1}=\frac{\tan 8 A}{\tan 2 A}$
Q. 3 a. Find the coefficient of x^{18} in the expansion of $\left(x^{2}+\frac{3 a}{x}\right)^{15}$
b. If the first term of an A.P is 2 and the sum of first five terms is equal to fourth of the sum of the next five terms, then (i) show that $\mathrm{T}_{20}=-112$ (ii) fino the sum of first 30 terms.
Q. 4 a. Show that

$$
\left|\begin{array}{ccc}
a & b & c \tag{8}\\
a^{2} & b^{2} & c^{2} \\
b+c & c+a & a+b
\end{array}\right|=(b-c)(c-a)(a-b)(a+b+c)
$$

b. Using determinants solve the following system of equations:

$$
\begin{align*}
& 2 y-3 z=0 \tag{8}\\
& x+3 y=-4 \\
& 3 x+4 y=3
\end{align*}
$$

Q. 5 a. Find the equation of the right bisector of the segment joining $A(1,1)$ and B(2, 3)
b. Find the equation of the lines through the origin and making an angle of 60° with the line $x+y \sqrt{3}+3 \sqrt{3}=0$
Q. 6 a. Find the equation of the circle which passes through the points (5, -8$),(2,-9)$ and $(2,1)$. Find also the co-ordinates of its centre and radius.
b. Find the length of major and minor axis, eccentricity, the co-ordinates of vertices and foci, directrices and the length latus rectum of the ellipse $3 x^{2}+2 y^{2}=6$.
Q. 7 a. If $\mathrm{y}=\log \left(\mathrm{x}+\sqrt{1+\mathrm{x}^{2}}\right)$, Prove that
$\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}=0$
b. Find the equation of the tangent to the curve $y=\frac{x-7}{(x-2)(x-3)}$ at the point where it cuts x -axis.
Q. 8 a. Evaluate $\int \frac{4 x+1}{x^{2}+3 x+2} d x$
b. Evaluate $\int_{0}^{\frac{\pi}{4}} \log (1+\tan x) \mathrm{dx}$
Q. 9 a. Solve the initial value problem

$$
x \frac{d y}{d x}+\cot y=0 \text {, when } y(\sqrt{2})=\pi / 4
$$

(8)
b. Solve $\left(x^{2}+x y\right) d y=\left(x^{2}+y^{2}\right) d x$
(8)

