- **Q.2** a. List out limitations of optical fiber communication systems.
- Student Bounts, com b. A step index multimode fiber with a numerical aperture of a 0.20 supports approximately 1000 modes at an 850nm wavelength.
 - (i) What is the diameter of its core?
 - (ii) How many modes does the fiber support at 1320nm?
 - c. A fiber has normalized frequency V = 26.6 and the operating wavelength is 1300nm. If the radius of the fiber core is 25 µm, compute the numerical aperture.

Answer:

De Limitations of OFC: High initial Cost, Maintenance High initial Cost, Maintenance repair Cost, jointing & testing pr repair Cost, jointing & testing pr - 21865, Tensile Stress, Shart lin Shart links, Fiber Losses Shart links, Fiber Losses	100,
- Brief explaination about es	ock (04)
$\mathcal{B}_{\bullet} No of modes$ $M = \frac{1}{2} \left[\frac{K\alpha}{\lambda} \cdot NA \right]^{2}$ $1000 = \frac{1}{2} \left[\frac{K\alpha}{850 \times 10^{9}} \times 0.20 \right]^{2}$	03)
$a = 60.49 \text{ Rem}$ 2 $M = \frac{1}{2} \left[\frac{7 \times 60.49 \times 10^{6} \times 0.20}{1550 \times 10^{9}} \times 0.20 \right] = 300$	0.63
© $V = 26.6$, $\lambda = 1300 \times 10^{-9}$ $a = 25 \times 10^{-6} \text{m}$	2/7
$V = \frac{2\pi a}{\lambda} \cdot NA \Rightarrow NA = V \cdot \frac{\lambda}{2\pi a}$ $NA = 26.6 1300 \times 10^{-9} = 0.220$ $2\pi \times 25 \times 10^{-6}$	04)

- **Q.3** b. A continuous 12 km long optical fiber link has a loss of 1.5 dB/km.
 - (i) What is the minimum optical power level that must be launched into the fiber to maintain an optical power level of 0.3 µW at the receiving end?
 - (ii) What is the required input power if the fiber has a loss of 2.5 dB/km?
- Student Bounty.com c. An LED operating at 850 nm has a spectral width of 45 nm. What is the pulse spreading in ns/km due to material dispersion?

Answer:

(a)
$$z = 12 \text{ km}, \ \kappa = 1.5 \text{ dB/km}, \ p(0) = 0.3 \text{ llw}$$

(b) $x = 10 \text{ kx} \frac{1}{2} \log \left(\frac{p(0)}{p(2)} \right)$
 $1.5 = 10 \times \frac{1}{12} \log \left(\frac{0.3 \text{ llw}}{p(2)} \right)$
 $P(2) = 4.76 \times 10^9 \text{ w}$

(c) $2.5 = 10 \times 1 \log \left(\frac{P(0)}{4.76 \times 10^9} \right)$
 $1|ppaver, P(0) = 4.76 \text{ llw}$

(d) $x = 850 \text{ nm}, \ \alpha = 45 \text{ nm}$
 $x = x + 2 \text{ lm}$
 $x = x +$

- Student Bounts, com a. Show that the optical power emitted from an LED is $\frac{P_{int}}{n(n+1)^2}$ where P_{int} is the interpally and **Q.4** is the internally generated optical power, n is the reference index of LED material.
 - b. Describe the emission patterns of different types of LED and LASER diodes.

A neware

Answer:	
Q. 4 Main steps in the desiv @ nint = Rr, Tur Rm	ation
Rr+ Rnr	
1+ Rur Rr	T
$\frac{1}{\tau} = \frac{1}{\tau} + \frac{1}{\tau} + \frac{1}{\tau} + \frac{1}{\tau} = \frac{1}{\tau}$	T
Point = $R_Y \cdot L_y$ $P = \frac{1}{n(n+y)^2} \cdot fint$	Ć
(B) Emission patterns of L LED V/s LASER	Diode
1 1 1 1	<u></u>
Parameter Principle of Spartaneous operation emission	Stimulated emission
output bom Non- cohe sent	Coherent
Transmisser Smaller	Greater
efficiency Very low	Hesh 6
Colt Low	1 1/030

0.5 a. Briefly explain the source—to-fiber power launching.

Answer: 5.1 of Text Book

Student Bounty com b. A single mode fiber has a normalized frequency V = 2.40, a core refractive index $n_1 = 1.47$, a cladding refractive index $n_2 = 1.465$ and a core diameter $2a = 9 \mu m$. Let us find the insertion losses of a fiber joint having a lateral offset of 1 µm.

Answer: Page Number 230 of Text Book

0.6 a. Draw and explain the schematic diagram of a typical optical receiver.

Answer: 7.1.3 of Text Book

b. Explain the circuit diagram of high impedance bipolar transistor amplifier. List the benefits of a transimpedance amplifier.

Answer: 7.4.2, 7.4.3 of Text Book

- **Q.7** a. Write short notes of any **TWO**.
 - (ii) Photodetector and pre-amplifier noises
 - (iii) Relative intensity noise (RIN)

Answer: Page Number 361-363 of Text Book

- **Q.8** a. Write short notes on
 - (i) RZ codes
 - (ii) Block codes

Answer: 8.2.2, 8.2.3 of Text Book

b. With help of neat sketch. Explain the basic setup for an automatic-repeatrequest (ARO) error correction scheme.

Answer: 8.3 of Text Book

a. Describe (i) SONET/SDH Networks (ii) Frame format of SONET/SDH 0.9 **Answer:**

* Voice, Video, Lata, internet & data from LANS, MANS & WANS WAN - Ge transported area SONET & a SDA network.
Adv. of SOMET (SDH: Reduced cost Integrated NIW elements Offers network Survivalsslity feat - 22 868 composii Sle with legang & future networks. Remote operation capalos litéas'

- Student Bounty.com b. A 2×2 biconical tapered fiber coupler has an input optical power level of $P_0 = 200 \mu W$. The output powers at the other three ports are $P_1 = 90 \mu W$,
 - $P_2 = 85 \mu W$ and $P_3 = 6.3 \mu W$. Find:-
 - (i) Coupling ratio
 - (ii) Excess loss

Answer: Page Number 387-388 of Text Book

Text Book

Optical Fiber Communications, Gerd Keiser, 3rd Edition, McGraw Hill Publications, 2000