Code: AE75 Subject: OPTOELECTRONICS AND COMMUN

Time: 3 Hours

DECEMBER 2013

Max. Marks: 10

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q. 1 Choose the correct or the best alternative in the following:

a. A light ray is incident form glass to air. If $n_{1}=1.5$ and $n_{2}=1$, the critical angle is
(A) 41.81^{0}
(B) 81.41^{0}
(C) 14.18^{0}
(D) 18.14^{0}
b. For a fiber cable $\mathrm{n}_{\text {core }}=1.5$ and $\mathrm{n}_{\text {cladding }}=1.48$. The numerical aperture is
(A) 0.442
(B) 0.244
(C) 0
(D) 1
c. An optical fiber has a diameter of $50 \mu \mathrm{~m}, \mathrm{n}_{1}=1.48, \mathrm{n}_{2}=1.46$ and $\lambda=0.82 \mu \mathrm{~m}$. The number of modes will be
(A) 3801
(B) 1083
(C) 100
(D) 1000
d. A multimode step index optical fiber with relative refractive index difference of 1.5% and core refractive index 1.48 is to be used for single mode operation. If $\lambda=0.85 \mu \mathrm{~m}$, the maximum core diameter will be
(A) 1.3 m
(B) 1.3 mm
(C) $1.3 \mu \mathrm{~m}$
(D) $2.6 \mu \mathrm{~m}$
e. A fiber has an average loss of $3 \mathrm{~dB} / \mathrm{km}$ at 900 nm . The length over which the power decreases by 50% is
(A) 1 km
(B) 2 km
(C) 3 km
(D) 4 km

Code: AE75 Subject: OPTOELECTRONICS AND COMMUN

f. The radiative and non radiative recombination life times of minority carriers the active region of a heterjunction LED are 60 nsec and 90 nsec respectively. The total carrier recombination life time is
(A) 63 nsec
(B) 36 nsec
(C) 10 nsec
(D) 100 nsec
g. A PIN photodiode is fabricated by GaAs has bandgap energy of 1.43 eV at $300^{\circ} \mathrm{k}$. It's upper cut-off wavelength is
(A) 867 nm
(B) 768 nm
(C) 10 nsec
(D) None of these
h. For a 2×2 fiber coupler, if the input power is $200 \mu \mathrm{~W}$ and throughput power is $90 \mu \mathrm{~W}$, the insertion loss will be
(A) 6.43 dB
(B) 4.63 dB
(C) 3.4 dB
(D) None of these
i. Which of the following fibers are suitable for WDM of signals:
(A) Dispersion optimized
(B) Dispersion - shifted
(C) Dispersion flattened
(D) Any fiber
j. Photons having an energy of 1.53×10^{-19} joules are incident on a photodiode having responsivity of $0.65 \mathrm{~A} / \mathrm{W}$. If the output power is $10 \mu \mathrm{~W}$, the generated photocurrent is
(A) 6 nA
(B) $6.5 \mu \mathrm{~A}$
(C) 6 mA
(D) None of these

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q. 2 a. List out limitations of optical fiber communication systems.
b. A step index multimode fiber with a numerical aperture of a 0.20 supports approximately 1000 modes at an 850 nm wavelength.
(i) What is the diameter of its core?
(ii) How many modes does the fiber support at 1320 nm ?
c. A fiber has normalized frequency $\mathrm{V}=26.6$ and the operating wavelength is 1300 nm . If the radius of the fiber core is $25 \mu \mathrm{~m}$, compute the numerical aperture.
Q. 3 a. Explain the pulse dispersion in optical fibers with suitable diagram.

Code: AE75 Subject: OPTOELECTRONICS AND COMMUN

b. A continuous 12 km long optical fiber link has a loss of $1.5 \mathrm{~dB} / \mathrm{km}$.
(i) What is the minimum optical power level that must be launched into the fibe to maintain an optical power level of $0.3 \mu \mathrm{~W}$ at the receiving end?
(ii) What is the required input power if the fiber has a loss of $2.5 \mathrm{~dB} / \mathrm{km}$?
c. An LED operating at 850 nm has a spectral width of 45 nm . What is the pulse spreading in $\mathrm{ns} / \mathrm{km}$ due to material dispersion?
Q. 4 a. Show that the optical power emitted from an LED is $\frac{P_{\text {int }}}{n(n+1)^{2}}$ where $P_{\text {int }}$ is the internally generated optical power, n is the reference index of LED material.
b. Describe the emission patterns of different types of LED and LASER diodes.
Q. 5 a. Briefly explain the source-to-fiber power launching.
b. A single mode fiber has a normalized frequency $\mathrm{V}=2.40$, a core refractive index $\mathrm{n}_{1}=1.47$, a cladding refractive index $\mathrm{n}_{2}=1.465$ and a core diameter $2 \mathrm{a}=$ $9 \mu \mathrm{~m}$. Let us find the insertion losses of a fiber joint having a lateral offset of 1 $\mu \mathrm{m}$.
Q. 6 a. Draw and explain the schematic diagram of a typical optical receiver.
b. Explain the circuit diagram of high impedance bipolar transistor amplifier. List the benefits of a transimpedance amplifier.
Q. 7 a. Write short notes of any TWO.
(i) Carrier power
(ii) Photodetector and pre-amplifier noises
(iii) Relative intensity noise (RIN)
Q. 8 a. Write short notes on
(8)
(i) RZ codes
(ii) Block codes
b. With help of neat sketch. Explain the basic setup for an automatic-repeat-request (ARQ) error correction scheme.
Q. 9 a. Describe (i) SONET/SDH Networks (ii) Frame format of SONET/SDH
b. A 2×2 biconical tapered fiber coupler has an input optical power level of $\mathrm{P}_{0}=$ $200 \mu \mathrm{~W}$. The output powers at the other three ports are $\mathrm{P}_{1}=90 \mu \mathrm{~W}, \mathrm{P}_{2}=85 \mu \mathrm{~W}$ and $P_{3}=6.3 \mu \mathrm{~W}$. Find:-
(i) Coupling ratio
(ii) Excess loss

