Time: 3 Hours

DECEMBER 2013

Student Bounty.com PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

Code: AE74

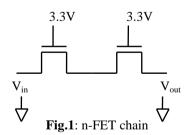
- Ouestion 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

a. The threshold voltage of n-MOS depletion mode transistor when $V_{SB} = 0$ is

(A)
$$V_{td} = +0.2V_{DD}$$


(B)
$$V_{td} = -0.7 V_{DD}$$

(C)
$$V_{td} = -0.2V_{DD}$$

(D)
$$V_{td} = +0.7 V_{DD}$$

b. The total number of transistors required to realize 3-input n-MOS NAND gate is

c. If $V_{tn} = +0.55V$ and $V_{in} = 2.9$ V, then the output voltage (V_{out}) of the two n-FET chain shown in **Fig.1** is

(A) 2.75V

(B) 2.9V

(C) 3.3V

- **(D)** 0V
- d. In n-MOS design rules the minimum separation between diffusion to diffusion is
 - (A) 1λ

(B) 2λ

(C) 3λ

(D) 4λ

- e. In 5 µm technology, the value of standard unit of capacitance is
 - (A) 0.1 PF

(B) 0.0023 PF

(C) 0.0032 PF

- **(D)** 0.01 PF
- f. The condition to work n-MOS transistor in saturation region
 - (A) $V_{gs} > V_t \& V_{ds} < V_{gs} V_t$
- **(B)** $V_{gs} < V_t & V_{ds} > V_{gs} V_t$
- (C) $V_{gs} > V_t \& V_{ds} > V_{gs} V_t$
- **(D)** $V_{gs} > V_t \& V_{ds} = 0$
- g. The Z_{pu}/Z_{pd} ratio of Pseudo n-MOS inverter driven through similar inverter is
 - **(A)** 3/1

(B) 1/3

(C) 4/1

- **(D)** 1/4
- h. The dynamic power consumption (P_d) of a CMOS is given by
 - (A) $m(C_L V_{DD}^2 f)$

(B) $V^2_{DD}f$

(C) $V^2_{DD}T$

- $(\mathbf{D}) V_{DD}f$
- i. The High level noise margin (NM_H) of inverter is given by
 - $(A) V_{IH} V_{IL}$

- **(B)** $V_{OH min} V_{IL min}$
- (C) $V_{OH max} V_{OL max}$
- **(D)** $V_{IH max} V_{IL max}$
- j. The objective of Built in Self Test (BIST) is to
 - (A) Reduce test pattern generation cost (B) Reduce the value of test data

(C) Reduce test time

(**D**) All of these

Answer any FIVE Ouestions out of EIGHT Ouestions. Each question carries 16 marks.

Q.2 a. Explain with sketches P-well process of CMOS fabrication. **(8)**

- b. What is the importance of Twin-Tub process? Sketch cross-sectional view of Twin-Tub Inverter. **(5)**
- c. Mention the advantages of CMOS over Bipolar technology.

(3)

- Q.3 a. Starting from the fundamentals derive an expression for I_{ds} of n-MOS inverter in saturation region and linear region.
 - b. What is Latch-up in CMOS? Sketch latch-up circuit for CMOS n-well process.

c. For n-MOS enhancement transistor, $\mu_n = 215 \text{ cm}^2/\text{V}$ sec, Oxide capacitance $(Cox) = 2.3 \text{ fF/} \mu\text{m}^2$, drain current $(I_d) = 100 \mu\text{A}$ and W/L = 10. Calculate Transconductance (g_m).

(4)

Code: AE74

- a. Discuss λ -based design rules for wires and contacts. **Q.4**
 - b. Draw stick-diagrams for n-MOS inverter, P-well CMOS inverter

- (i) 3-input n-MOS NOR gate
- (ii) 2-input CMOS (P-well) NOR gate
- a. Show that the total delay of cascaded N number of CMOS inverters is $3.5\,\mathrm{eN}\tau$. 0.5
 - b. Explain how Super buffers can be used to achieve symmetrical transitions, when inverters are used to drive more capacitive loads. **(5)**
 - c. Find the time constant (τ_p) of p-FET for the following parameters: $(W/L)_p = 8$, $K_p = 62 \mu A/V^2$, $V_{tp} = -0.85 \text{ V}$, $V_{DD} = 3.3 \text{ V}$, the total capacitance is 150 fF. **(4)**
- **Q.6** a. Write the scaling factors for the following device parameters. **(8)**
 - (i) Gate capacitance
 - (ii) Saturation current I_{dss}
 - (iii) Power speed product (P_T)
 - b. With truth table and stick diagram explain Bus arbitration logic for n-line bus.

- **Q.7** a. Explain the operation of 4x4 barrel shifter with schematic. What is the limitation of 4x4 crossbar switch? **(8)**
 - b. Design a single bit adder and implement 4-bit ALU functions using adder elements. **(8)**
- **Q.8** a. Explain with circuit diagram n-MOS and CMOS Pseudo-static memory cells.

(8)

- b. Discuss briefly the ground rules for successful design.
- **Q.9** Write short notes on: $(4 \times 4 = 16)$
 - (i) Design style and philosophy
 - (ii) System partitioning
 - (iii) Boundary Scan Test (BST)
 - (iv) Built-In-Self-Test (BIST)