AMIETE - ET

Time: 3 Hours
please write your roll no. at the space provided on each page IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q. 1 Choose the correct or the best alternative in the following:

a. The threshold voltage of n-MOS depletion mode transistor when $\mathrm{V}_{\mathrm{SB}}=0$ is
(A) $\mathrm{V}_{\mathrm{td}}=+0.2 \mathrm{~V}_{\mathrm{DD}}$
(B) $\mathrm{V}_{\mathrm{td}}=-0.7 \mathrm{~V}_{\mathrm{DD}}$
(C) $\mathrm{V}_{\mathrm{td}}=-0.2 \mathrm{~V}_{\mathrm{DD}}$
(D) $\mathrm{V}_{\mathrm{td}}=+0.7 \mathrm{~V}_{\mathrm{DD}}$
b. The total number of transistors required to realize 3-input n-MOS NAND gate is
(A) 2
(B) 3
(C) 4
(D) 6
c. If $\mathrm{V}_{\mathrm{tn}}=+0.55 \mathrm{~V}$ and $\mathrm{V}_{\text {in }}=2.9 \mathrm{~V}$, then the output voltage $\left(\mathrm{V}_{\text {out }}\right)$ of the two n -FET chain shown in Fig. 1 is

(A) 2.75 V
(B) 2.9 V
(C) 3.3 V
(D) 0 V
d. In n-MOS design rules the minimum separation between diffusion to diffusion is
(A) 1λ
(B) 2λ
(C) 3λ
(D) 4λ
e. In $5 \mu \mathrm{~m}$ technology, the value of standard unit of capacitance is
(A) 0.1 PF
(B) 0.0023 PF
(C) 0.0032 PF
(D) 0.01 PF
f. The condition to work n-MOS transistor in saturation region
(A) $\mathrm{V}_{\mathrm{gs}}>\mathrm{V}_{\mathrm{t}} \& \mathrm{~V}_{\mathrm{ds}}<\mathrm{V}_{\mathrm{gs}}-\mathrm{V}_{\mathrm{t}}$
(B) $\mathrm{V}_{\mathrm{gs}}<\mathrm{V}_{\mathrm{t}} \& \mathrm{~V}_{\mathrm{ds}}>\mathrm{V}_{\mathrm{gs}}-\mathrm{V}_{\mathrm{t}}$
(C) $\mathrm{V}_{\mathrm{gs}}>\mathrm{V}_{\mathrm{t}} \& \mathrm{~V}_{\mathrm{ds}}>\mathrm{V}_{\mathrm{gs}}-\mathrm{V}_{\mathrm{t}}$
(D) $\mathrm{Vgs}_{\mathrm{gs}}>\mathrm{V}_{\mathrm{t}} \& \mathrm{~V}_{\mathrm{ds}}=0$
g. The $\mathrm{Z}_{\mathrm{pu}} / \mathrm{Z}_{\mathrm{pd}}$ ratio of Pseudo n-MOS inverter driven through similar inverter is
(A) $3 / 1$
(B) $1 / 3$
(C) $4 / 1$
(D) $1 / 4$
h. The dynamic power consumption $\left(\mathrm{P}_{\mathrm{d}}\right)$ of a CMOS is given by
(A) $\mathrm{m}\left(\mathrm{C}_{\mathrm{L}} \mathrm{V}^{2}{ }_{\mathrm{DD}} \mathrm{f}\right)$
(B) $\mathrm{V}^{2}{ }_{\mathrm{DD}} \mathrm{f}$
(C) $\mathrm{V}^{2}{ }_{\mathrm{DD}} \mathrm{T}$
(D) $V_{D D} f$
i. The High level noise margin $\left(\mathrm{NM}_{\mathrm{H}}\right)$ of inverter is given by
(A) $\mathrm{V}_{\mathrm{IH}}-\mathrm{V}_{\mathrm{IL}}$
(B) $\mathrm{V}_{\mathrm{OH} \text { min }}-\mathrm{V}_{\mathrm{IL} \text { min }}$
(C) $\mathrm{V}_{\mathrm{OH} \text { max }}-\mathrm{V}_{\mathrm{OL} \text { max }}$
(D) $\mathrm{V}_{\text {IH } \max }-\mathrm{V}_{\text {IL } \max }$
j. The objective of Built in Self Test (BIST) is to
(A) Reduce test pattern generation cost
(B) Reduce the value of test data
(C) Reduce test time
(D) All of these

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q. 2 a. Explain with sketches P-well process of CMOS fabrication.
b. What is the importance of Twin-Tub process? Sketch cross-sectional view of Twin-Tub Inverter.
c. Mention the advantages of CMOS over Bipolar technology.
Q. 3 a. Starting from the fundamentals derive an expression for I_{ds} of n -MOS inverter in saturation region and linear region.
b. What is Latch-up in CMOS? Sketch latch-up circuit for CMOS n-well process.
c. For n-MOS enhancement transistor, $\mu_{\mathrm{n}}=215 \mathrm{~cm}^{2} / \mathrm{Vsec}$, Oxide capacitance $($ Cox $)=2.3 \mathrm{fF} / \mu^{2}$, drain current $\left(\mathrm{I}_{\mathrm{d}}\right)=100 \mu \mathrm{~A}$ and $\mathrm{W} / \mathrm{L}=10$. Calculate Transconductance (gm_{m}).
Q. 4 a. Discuss λ-based design rules for wires and contacts.
b. Draw stick-diagrams for n-MOS inverter, P-well CMOS inverter
(i) 3-input n-MOS NOR gate
(ii) 2-input CMOS (P-well) NOR gate
Q. 5 a. Show that the total delay of cascaded N number of CMOS inverters is $3.5 \mathrm{eN} \tau$.
b. Explain how Super buffers can be used to achieve symmetrical transitions, when inverters are used to drive more capacitive loads.
c. Find the time constant (τ_{p}) of p-FET for the following parameters:
$(\mathrm{W} / \mathrm{L})_{\mathrm{p}}=8, \mathrm{~K}_{\mathrm{p}}=62 \mu \mathrm{~A} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{tp}}=-0.85 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V}$, the total capacitance is 150 fF .
Q. 6 a. Write the scaling factors for the following device parameters.
(i) Gate capacitance
(ii) Saturation current $\mathrm{I}_{\mathrm{dss}}$
(iii) Power speed product $\left(\mathrm{P}_{\mathrm{T}}\right)$
b. With truth table and stick diagram explain Bus arbitration logic for n-line bus.
Q. 7 a. Explain the operation of 4×4 barrel shifter with schematic. What is the limitation of 4×4 crossbar switch?
b. Design a single bit adder and implement 4-bit ALU functions using adder elements.
Q. 8 a. Explain with circuit diagram n-MOS and CMOS Pseudo-static memory cells.
b. Discuss briefly the ground rules for successful design.
Q. 9 Write short notes on :
(i) Design style and philosophy
(ii) System partitioning
(iii) Boundary Scan Test (BST)
(iv) Built-In-Self-Test (BIST)

