Code: AE68

Subject: EMBEDDED SYSTEMS D

ROLL NO.

AMIETE – ET

Time: 3 Hours

DECEMBER 2013

Max. Marks:

studentBounty.com PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Ouestion 1 is compulsory and carries 20 marks. Answer to 0.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

- (2×10)
- a. A tool converts a sequential program into finite state machines and register transfer logic.

(A) RT synthesis	(B) logic synthesis
(C) behavioral synthesis	(D) system synthesis

b. The programs that run on the development processor but execute code designed for the target processor is known as .

(A) instruction set simulator	(B) cross compilers
(C) device programmer	(D) ASIPs

c. The resolution of ADC/DAC is expressed as _____, where V_{max} is the maximum voltage of the analog signal and n is the number of bits for digital encoding.

(A) $\frac{V_{\min}}{2^n+1}$	(B) V_{\min} $(2^n - 1)$
(C) $V_{\text{max}} (2^n - 1)$	(D) $V_{\max}(2^n+1)$

- d. Identify the false statement from the following:
 - (A) cache is more expensive and faster than main memory
 - (B) cache is slower than main memory
 - (C) cache is designed using static RAM
 - (D) cache appears on the same chip as a processor

1

ode: AE68	Subject: EMBEDDED SYSTEMS D
e. In Direct Memory Acc between memories and p	ROLL NO. Subject: EMBEDDED SYSTEMS D cess, the purpose of is to transfer data beripherals. (B) ISR (D) DMA centrallar
(A) Semaphore(C) Pipes	(B) ISR(D) DMA controller
f. In a protoco	ol, the master uses one control line, often called the te the data transfer.
	edge (B) strobe, handshake (D) handshake, request
8	nd another higher priority task unblocks, then the task oped and moves to the ready state. This is a feature of
·	
(A) Non-preemptive RT (C) Jump RTOS	OS (B) Preemptive RTOS (D) Prioritized RTOS
(C) Jump RTOSh. In, the stored	
 (C) Jump RTOS h. In, the stored used in environments wi (A) OTP ROM 	(D) Prioritized RTOSI bits are susceptible to undesired changes if the chip is th much electrical noise or radiation.(B) PROM
(C) Jump RTOSh. In, the stored used in environments with	(D) Prioritized RTOS I bits are susceptible to undesired changes if the chip is th much electrical noise or radiation.
 (C) Jump RTOS h. In, the stored used in environments wi (A) OTP ROM (C) EEPROM 	(D) Prioritized RTOSI bits are susceptible to undesired changes if the chip is th much electrical noise or radiation.(B) PROM
 (C) Jump RTOS h. In, the stored used in environments wi (A) OTP ROM (C) EEPROM 	 (D) Prioritized RTOS d bits are susceptible to undesired changes if the chip is th much electrical noise or radiation. (B) PROM (D) EPROM
 (C) Jump RTOS h. In, the stored used in environments wi (A) OTP ROM (C) EEPROM i. Embedded system micro (A) save power (C) save cpu 	 (D) Prioritized RTOS d bits are susceptible to undesired changes if the chip is th much electrical noise or radiation. (B) PROM (D) EPROM (D) EPROM (B) save memory
 (C) Jump RTOS h. In, the stored used in environments wi (A) OTP ROM (C) EEPROM i. Embedded system micro (A) save power (C) save cpu j. Most RTOS maintain a 	 (D) Prioritized RTOS d bits are susceptible to undesired changes if the chip is th much electrical noise or radiation. (B) PROM (D) EPROM controllers use sleep mode and idle mode to (B) save memory (D) save i/p

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. Mention design metrics of an embedded system. Differentiate the following:
 - (i) General-purpose processors
 - (ii) Single purpose processors
 - (iii) Application-specific processors (2+6)
 - b. Give the sequence of steps to optimize the datapath and FSM in custom single purpose processors. (5)

		ROLL NO.	
C	Cod	e: AE68 Subject: EMBEDDED SYSTEMS D	Chro
	c.	Mention RTL sequential and combinational components.	i au
Q.3	a.	Explain various stages of instruction execution in a microprocessor. C illustration for non-pipelined and pipelined instruction execution.	Sive an (4+4)
	b.	Explain the significance of FSMD in simple general purpose microprowith the help of diagram.	ocessor (5)
	c.	Mention features of Digital Signal Processors (DSP) as ASIPs.	(3)
Q.4	a.	Explain the working of Pulse Width Modulators (PWM). Give calculations for 25%, 50% and 75% duty cycles in PWM.	ve the (3+3)
	b.	For an analog output signal whose voltage range is from 0 to 10 V 5-bit digital encoding, calculate the encodings for : (i) 2.25 V (ii) 5.75 V	and an
		(iii) 7 V	(6)
	c.	Explain briefly the working of real-time clock in an embedding system.	(4)
Q.5	a.	Compare the following and give their respective applications: (i) ROM (ii) Mask ROM (iii) One-time Programmable ROM	(6)
	b.	Give the block diagram of 4×4 RAM. Draw the memory cell internal SRAM and DRAM.	s for (2+4)
	c.	Explain any two cache mapping techniques.	(4)
Q.6	a.	Draw the transition diagram for task states.	(3)
	b.	Define reentrancy. Mention three rules to decide if a function is reentran	t. (2+3)
	c.	How do semaphores address the problems like priority inversion a deadly embrace? Give an example for illustration.	nd the (8)
Q.7		Write short notes on any <u>FOUR</u> of the following:	
		 (i) Strobe and handshake protocols (ii) Memory mapped I/O and standard I/O (iii) Multi-level bus architecture 	
		 (iv) I²C serial protocol and PCI bus parallel protocol (v) Wireless Protocols (IrDA, Blue Tooth and IEEE 802.11) 	(4 × 4)
Q.8	a.	Explain the interrupt routine in RTOS. Give the working of interrup ISR, RTOS, TaskHigh and TaskLow.	pts for (6)

Code: AE68

Subject: EMBEDDED SYSTEMS D

ROLL NO.

- StudentBounty.com b. Explain the role of message queues, mailbox and pipes in advantages communication. Give their respective interprocess disadvantages.
- c. Explain the role to timer function and events in RTOS. Give an example for illustration.
- a. Explain the features of hard real-time scheduling and soft real-time Q.9 scheduling. Give an example for illustration. (6)
 - b. Mention any four power saving techniques in RTOS. (4)
 - c. Design an application to illustrate RTOS. Give the block diagram and label various design components of RTOS. (6)