DECEMBER 2013

please write your roll no. at the space provided on each page IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q. 1 Choose the correct or the best alternative in the following:

a. Not taking care of zero adjustment of an instrument before measurement can be classified as
(A) systematic error
(B) gross error
(C) random error
(D) dynamic error
b. A galvanometer recorder has
(A) very high input impedance
(B) high input impedance
(C) low input impedance
(D) very low input impedance
c. A Dual beam CRO uses
(A) electronic switch
(B) two electron guns
(C) one electron gun
(D) two time base generator circuits
d. The sensitivity of a Wheatstone bridge depends upon \qquad .
(A) galvanometer current sensitivity
(B) galvanometer resistance
(C) bridge supply voltage
(D) All of these
e. The value of the multiplier resistance on the 500 V range of d.c. voltmeter, that uses $50 \mu \mathrm{~A}$ meter movement with an internal resistance of 200ohms is
(A) $99.99 \mathrm{M} \Omega$
(B) $0.999 \mathrm{M} \Omega$
(C) $9.99 \mathrm{M} \Omega$
(D) $999 \mathrm{M} \Omega$
f. The chart speed of a recording instrument is $30 \mathrm{~mm} / \mathrm{s}$. One cycle of the signal being recorded extends over 5 mm (time base)then the frequency consumes is
(A) 30 cycles
(B) 6 cycles
(C) 0.3 cycles
(D) 5 cycles

Code: AE60 Subject: INSTRUMENTATION AND MEASUK

g. A Null type of instrument as compared to a deflection type instrument has
(A) high accuracy
(B) low sensitivity
(C) fast response
(D) all of these
h. A voltmeter having a resistance of 998 ohms is connected to a cell of emf 2 volt and internal resistance 2 ohm . The error in the measurement of emf will be
(A) $4 \times 10^{-1} \mathrm{~V}$
(B) $2 \times 10^{-1} \mathrm{~V}$
(C) $4 \times 10^{-3} \mathrm{~V}$
(D) $2 \times 10^{-3} \mathrm{~V}$
i. Maxwell's bridge is used to measure Q factor in the range of
(A) 1-100
(B) 1-10
(C) 1-50
(D) 2-200
j. For a quarter wavelength ideal transmission line of characteristics impedance 50 ohm and load impedance 100 ohm , the input impedance is
(A) 25Ω
(B) 52Ω
(C) 250Ω
(D) 2.5Ω

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q. 2 a. Differentiate between the direct and indirect method of measurement.
(8)
b. Define limiting errors. A $0-10 \mathrm{~A}$ ammeter has an accuracy of 1.5% of full scale reading. The current indicated by the ammeter is 2.5 A . Calculate the limiting values of current and percentage limiting error.
Q. 3 a. A Kelvin's bridge is shown in Fig. 1 below, the ratio of R_{a} to R_{b} is 1200 ohms $R_{1}=10$ ohms and $R_{1}=0.5 R_{2}$. Calculate unknown resistance R_{x}.

Fig. 1
b. An ac bridge has the following constants in Fig.2.

Arm AB - capacitor of $0.5 \mu \mathrm{~F}$ in parallel with $1 \mathrm{k} \Omega$ resistance
Arm AD - resistance of $2 \mathrm{k} \Omega$
Arm BC - capacitor of $0.5 \mu \mathrm{~F}$
Arm CD - unknown capacitor C_{X} and R_{X} in series
Frequency - 1 kHz
Determine the unknown capacitance and dissipation factor.

Fig. 2
Q. 4 a. Convert a basic D'Arsonval movement with an internal resistance of 100 ohm and full scale deflection of 10 mA into a multirange dc voltmeter with ranges from $0-5 \mathrm{~V}, 0-50 \mathrm{~V}, 0-100 \mathrm{~V}$.

Fig. 3
b. Explain with the diagram solid state voltmeter using Op-Amp.
Q. 5 a. Explain with the help of a neat diagram the working of a Universal Counter for measurement of frequency and time period.
b. Draw the labelled circuit diagram and explain working of a Q-meter. Write its applications.
Q. 6 a. Describe with the help of a neat block diagram the operation of an AF Sine wave generator.
b. Explain any four features of CRT.
Q. 7 a. Explain the working of Heterodyne Wave Analyzer. Write its applications. (8)
b. Explain with the block diagram, the working of a harmonic distortion analyzer.
Q. 8 a. Write the importance of Recording Data. Explain the working and application of X-Y recorder.
b. Discuss the advantages and limitation of digital data recording.
Q. 9 a. Explain working of LVDT. Where it is used and what are its advantages.

Code: AE60 Subject: INSTRUMENTATION AND MEASUK

b. (i) Calculate the strain in a specimen if the attached strain gauge gas a strain factor of 2 , a resistance of 120 ohms and the change in resistance measured is 0.1 ohms.
(ii) Calculate the gauge factor of a strain gauge made from a material that acts like a perfectly incompressible material deforming elastically at small strain. (Assuming the resistivity doesn't change with strain)

