Code: AE57/AC57/AT57

Subject: SIGNALS AND SYST

ROLL NO.

AMIETE – ET/CS/IT

Time: 3 Hours

DECEMBER 2013

SYST Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a. The function $\sin(\pi u)/(\pi u)$ is denoted by

(A) sinc (πu)	$(\mathbf{B})\operatorname{sinc}(\mathbf{u})$	
(C) signum	(D) none of these	

b. A periodic signal x(n) of period N_1 is added to another periodic signal of period N_2 . The period of the resulting signal is always

(A) $N_1 + N_2$	(B) $N_1 N_2$
(C) LCM of N_1 and N_2	(D) GCD of N_1 and N_2

c. The unit step response of an LTI system with impulse response $h(n) = \delta(n) - \delta(n-1)$ is

(A) $\delta(n-1)$	(B) δ(n)
(C) u(n−1)	(D) u(n)

d. If the fourier series coefficients of a signal are periodic, then the signal must be

(A) continuous-time, periodic	(B) discrete-time, periodic
(C) continuous-time, nonperiodic	(D) discrete-time, nonperiodic

e. The Fourier series representations are based on using

(A) constant coefficients	(B) only cosine functions
(C) only sine functions	(D) orthogonal functions

f. Let X[k] represents the Discrete-time Fourier series (DTFS) coefficients of the periodic sequence x(n) with period N. The DTFS coefficients of the signal $(-1)^n x(n)$ in terms of X[k] are

(A) $X[k]$	(B) $X[-k]$
(C) $X\left[k+\frac{N}{2}\right]$	$(\mathbf{D}) \ \mathbf{X} \left[\mathbf{k} - \frac{\mathbf{N}}{2} \right]$

www.StudentBounty.com Homework Help & Pastpapers

			132		
			ROLL NO.		
	Co	de: AE57/AC57/AT57 Su	ubject: SIGNALS AND SYST	ITB2	
	Roll No.Code: AE57/AC57/AT57Subject: SIGNALS AND SYSTg. The property of Fourier transform that states that the compression in time domain is equivalent to expansion in the frequency domain is(A) duality(B) time shifting (C) time scaling(C) time scaling(D) frequency shiftingh. Two signals $x_1(n)$ and $x_2(n)$ are related by $x_2(n) = x_1(-n)$. In the z-				
		(A) duality(C) time scaling	(B) time shifting(D) frequency shifting	Com	
	h.	Two signals $x_1(n)$ and $x_2(n)$ are domain, their ROCs are	related by $x_2(n) = x_1(-n)$. In the	ez-	
		(A) the same(C) negative of each other	(B) reciprocal of each other(D) complement of each other	L	
	i. For distortionless transmission through an LTI system of frequency response $H(\omega)$, the phase of $H(\omega)$ is			nse	
		(A) constant(C) independent of ω	(B) zero(D) linearly dependent on ω		
	j.	A system characterized by the system	n function $H(z) = \frac{1}{2}(1 + z^{-1})$ is a		
		(A) lowpass filter(C) bandpass filter	(B) highpass filter(D) bandreject filter		
		Answer any FIVE Questions Each question car	÷		
Q.2	a.	For an energy signal $x(t)$ with energy			
		following signals: (i) $x(t-T)$	(ii) x(at)		
		(iii) $x(at - b)$	(iv) ax(t)	(8)	
	b.	If $x(t) * h(t) = y(t)$, then show that	$\mathbf{x}(\mathbf{at}) * \mathbf{h}(\mathbf{at}) = \frac{1}{ \mathbf{a} } \mathbf{y}(\mathbf{at})$	(8)	
Q.3	a.	Let $X[k]$ represent the DTFS coeff period N. Find the DTFS coefficien	icients of the periodic sequence $x(n)$ ats of $(-1)^n x(n)$	with (6)	
	b.	b. Suppose we are given the following information about a periodic signal $x(n)$			
		with period $N = 8$ and Fourier series			
		(i) $X[k] = -X[k-4]$ Sketch one period of $x(n)$	(ii) $x(2n+1) = (-1)^n$	(10)	
Q.4	a.	Given that $x(t)$ has the Fourier trans of the signal listed below in terms of	form $X(\omega)$, express the Fourier transf f $X(\omega)$.	forms	
		(i) $x_1(t) = x(1-t) + x(-1-t)$	(ii) $x_2(t) = x(3t-6)$	(8)	
	b.	Find the Fourier transform $G(\omega)$ of t	he signal $g(t) = \frac{1}{\pi t}$	(8)	
Q.5	a.	Given that $x(n)$ has the Fourier tran	sform $X(e^{j\omega})$, express the Fourier		
	transforms of the following signals in terms of $X(e^{j\omega})$.				
		(i) $x_1(n) = (n-1)^2 x(n)$	(ii) $x_2(n) = e^{jn\pi/2}x(n+2)$	(8)	

www.StudentBounty.com Homework Help & Pastpapers

Code: AE57/AC57/AT57

Subject: SIGNALS AND SYST

ROLL NO.

StudentBounty.com b. Let the sequence x(n) be a real sequence and let $X(e^{j\omega}) = DTFT[x(n)]$ Prove that the magnitude spectrum is an even function, that is, (i) $|X(e^{j\omega})| = |X(e^{-j\omega})|$ Prove that the phase spectrum is an odd function, that is, (ii)

$$\angle X(e^{j\omega}) = -\angle X(e^{-j\omega})$$
(8)
a. A waveform $x(t) = 10 + 10\sin(500t)$ is to be sampled periodically and

Q.6 reproduced from these samples. Find the maximum allowable time interval between sample values. How many sample values are required to be stored in order to produce 2 seconds of this waveform? (6)

b. A signal $x(t) = \sin(\pi t)/(\pi t)$ is sampled by $s(t) = \sum_{n=1}^{\infty} \delta(t - n/2)$. Determine and sketch the sampled signal and its Fourier transform. (10)

- a. Show that for an LTI system, when the input is $x(t) = e^{s_0 t}u(t)$, the output is of **Q.7** the form $y(t) = H(s_0)e^{s_0t}u(t)$. How is $H(s_0)$ related to the impulse response of the system? (6)
 - b. Determine the impulse response h(t) of a system having a double-order pole at s = -a and a zero at s = -b, where a, b > 0 and b - a = B. It is also given that h(0) = 2(10)
 - **Q.8** a. Apply the final-value theorem of z -transform to determine $x(\infty)$ for the signal $\mathbf{x}(\mathbf{n}) = \begin{cases} 1, & \text{if } \mathbf{n} \text{ is even} \\ 0, & \text{otherwise} \end{cases}$ (7)
 - b. An LTI system is characterized by the system function

$$H(z) = \frac{3 - 4z^{-1}}{1 - 3.5z^{-1} + 1.5z^{-2}}$$

Specify the ROC of H(z) and determine the impulse response h(n) for the following conditions:

(i) The system is causal and unstable

(ii) The system is noncausal and stable

(iii) The system is anticausal and unstable (9)

Q.9

- a. Define the terms mean, variance, co-variance and correlation coefficient as applied to random variable X with pdf $f_X(x)$. (8)
 - b. Find the power spectral density for the random process $X(t) = 4\cos(5\pi t)$ and also compute the power in the random process. (8)

www.StudentBounty.com