Subject: ENGINEERING MATHEM Code: AE56/AC56/AT56

AMIETE - ET/CS/IT

Time: 3 Hours

DECEMBER 2013

SHIIDENT BOUNTY COM PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

0.1 Choose the correct or the best alternative in the following:

 (2×10)

a. If f(z) = u(x, y) + iv(x, y) is analytic, then its derivative f'(z) is equal to

(A)
$$\frac{\partial \mathbf{v}}{\partial \mathbf{v}} + \mathbf{i} \frac{\partial \mathbf{v}}{\partial \mathbf{x}}$$

(B)
$$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \mathbf{i} \frac{\partial \mathbf{v}}{\partial \mathbf{y}}$$

(C)
$$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \mathbf{i} \frac{\partial \mathbf{u}}{\partial \mathbf{y}}$$

(D) None of these

b. The value of the integral
$$\int_C \frac{2z+1}{z^2+z} dz$$
, where C is $|z| = \frac{1}{2}$, is

(B)
$$2\pi i$$

(C)
$$4\pi i$$

(D)
$$0$$

c. A unit tangent vector to the curve
$$x = t^2 + 2$$
, $y = 4t - 5$, $z = 2t^2 - 6t$, at the point $t = 2$, is

(A)
$$\frac{6i+3j+4k}{\sqrt{61}}$$

$$(B) \frac{6i+3j-4k}{\sqrt{61}}$$

(C)
$$2i + 2j + k$$

(D)
$$\frac{2i+2j+k}{3}$$

d. The value of the line integral
$$\int_{C} \left[\left(5xy - 6x^2 \right) dx + \left(2y - 4x \right) dy \right]$$
 along the curve

 $y = x^3$ from the point (1,1) to (2, 8) is

Code: AE56/AC56/AT56

Subject: ENGINEERING MATHEM

SHIIDENH BOUNDS, COM e. The value of $\Delta^3[(1+x)(1+2x)(1+3x)]$, if interval of differencing is 1, is

(A) 36

(B) 24

(C) 18

(D) 6

f. If $y_1 = 1$, $y_3 = 4$, $y_4 = 8$, then y_2 is equal to

(A) 2

(B) $\frac{5}{3}$

(C) $\frac{5}{4}$

(D) 3

g. The differential equation of a family of spheres $x^2 + y^2 + (z - c)^2 = R^2$, is

(A) xp + yq = 0

(B) xp - yq = 0

(C) yp + xq = 0

(D) yp - xq = 0

h. A party of n persons take their seats at random at a round table. The probability that two specified persons always sit together is

(A) $\frac{2}{n}$

(B) $\frac{2}{n-1}$

(C) $\frac{2}{n-2}$

(D) None of these

i. If the diameter of an electric cable is assumed to a continuous variate with p.d.f. $f(x) = kx(1-x), 0 \le x \le 1$, then K is equal to

(A) 4

(B) 5

 (\mathbf{C}) 6

(D) 8

j. If a random variable has a Poisson distribution such that 2P(1) = P(2), then the variance is

(A) 1

(B) 2

(C) 3

(D) 4

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. Show that the function $f(z) = \sqrt{|xy|}$ is not analytic at the origin even though Cauchy-Riemann equations are satisfied thereof. **(8)**

Code: AE56/AC56/AT56

Subject: ENGINEERING MATHEM

- b. Find the bilinear transformation which maps the points i,-i,1 of z-plane in 0,1,∞ of w-plane respectively.
- Q.3 a. Find Laurent's series expansion of $\frac{z^2-1}{z^2+5z+6}$ about z=0 in the region 2 < |z| < 3.
 - b. Use Residue theorem to evaluate $\int_{C} \frac{1-2z}{z(z-1)(z-2)} dz, C: |z| = 1.5$ (8)
- **Q.4** a. If $u = x^2 + y^2 + z^2$ and V = xI + yJ + zK, show that div(uV) = 5u (8)
 - b. Find the angle between the normals to the surface $xy = z^2$ at the points (4, 1, 2) and (3,3,-3).
- Q.5 a. Apply Green's theorem to evaluate $\int_{C} \left[\left(3x 8y^2 \right) dx + \left(4y 6xy \right) dy \right]$ Where C is the boundary of the region bounded by x=0, y=0, x+y=1 (8)
 - b. Use Divergence theorem to evaluate $\iint\limits_{S} \left[x^3 dy dz + x^2 y dz dx + x^2 z dx dy\right] \text{ where }$

S is the closed surface consisting of the cylinder $x^2 + y^2 = a^2$ and the circular discs z=0 and z=2. (8)

Q.6 a. Use Newton's divided difference formula to evaluate f(8) given that (8)

X	4	5	7	10	11	13
f(x)	48	100	294	900	1210	2028

b. Find an approximate value of $\log_e 5$ by calculating to four decimal places, by Simpson's $\frac{1}{3}$ rd rule,

$$\int_{0}^{5} \frac{dx}{4x+5}$$

dividing the range into ten equal parts.

Q.7 a. Apply Charpit's method to solve $(a^2 + b^2)y = bz$. (8)

(8)

Code: AE56/AC56/AT56 Subject: ENGINEERING MATHEM

b. Use method of separation of variables to solve $\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$, given the

$$u(0, y) = 8e^{-3y}$$
. (8)

- Q.8 a. A committee consists of 9 students two of which are from 1st year, three from 2nd year and four from 3rd year. Three students are to be removed at random. What is the chance that
 - (i) the three students belong to different classes.
 - (ii) two belong to the same class and third to the different class. (8)
 - b. In a certain college, 4% of the boys and 1% of girls are taller than 1.8m. Moreover 60% of the students are girls. If a student is selected at random and is found to be taller than 1.8m, what is the probability that the student is a girl?
- Q.9 a. Fit a Poisson distribution to the set of observations: (8)

X	0	1	2	3	4
f	122	60	15	2	1

b. Assuming that the diameters of 1000 brass plugs taken consecutively from a machine, form a normal distribution with mean 0.7515 cm and standard deviation 0.0020 cm, how many of the plugs are likely to be rejected if the approved diameter is 0.752 ± 0.004 cm? (Given: if z is the normal variable, then area under normal curve for $0 \le z \le 1.75$ is 0.4599 and for $0 \le z \le 2.25$ is 0.4878.)