LINEAR ICs & DIGITAL ELECTRONICS AE54/AC54/AT54

0.2 a. Enlist the various advantages of IC over discrete component circuits. Answer: 1.2 of Text Book I

StudentBounts.com b. Draw basic differential amplifier and discuss transfer characteristics of an ideal operational amplifier.

Answer: 2.4.1 & 2.4.2 of Text Book I

c. Design an amplifier with a gain of +5 using one OP-AMP Answer: Page Number 49 of Text Book I

Q.3 a. State non-ideal DC characteristics of an op-amp. Explain any two of them in detail.

Answer: 3.2 of Text Book I

- b. (i) Define Slew Rate of an op-amp
 - (ii) What causes the Slew Rate
 - (iii) How Slew Rate is measured
 - (iv) Can IC 741C be used for high frequency application?

Answer: 3.3.4 of Text Book I

O.4 a. Draw the characteristics of an ideal comparator and that of a commercially available comparator. Also list different types of comparators.

Answer: Page Number 207 of Text Book

a. Describe the operation of an Astable multivibrator using 555 timer. 0.5 Answer: 5.4 of Text Book I

> b. Calculate the values of LSB, MSB and full scale output for an 8-bit DAC for the 0 to 10V range.

Answer: (6) 8- 617 DAC range LSG: 18=256 For ION (12) Full Scale = SV. Scale OLA = (Fullscale Voltage - 1656) = 104-0.030 Fun

> c. What is a voltage regulator? State only name of the circuits that are used to make a regulated power supply.

Answer:

Q:5 2) ectronic (c) aquilator circuit in depende 10. amplifie

AE54/AC54/AT54 LINEAR ICs & DIGITAL ELECTRONICS

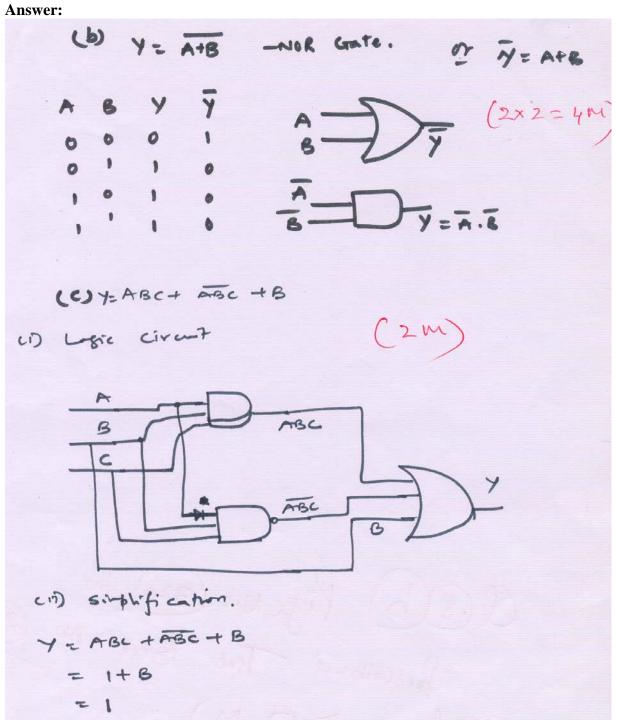
Q.6 a. Differentiate between positive logic and negative logic.
b. Perform the following conversions:
(i) (11001101101)₂ = (___)₁₀ (ii) (268)₁₀ = (__)₁₆
(iii) (39.12)₁₀ = (_)₂ (iv) (1054)₈ = (_)₁₀
(v) (2040.125)₁₀ = (_)₁₆ (vi) (1001101.1011)₂ = (_)₈
Answer:

21 logic athle 1 = higher values
level ' Level ' Level ' Level ' Level'
) logic athle 1 = higher values
level ' Level ' Level'
(4) ci3 (1100 110 11 001)₂ = (__) (6 × 2)
(ci) ci3 (1100 110 11 001)₂ = (__) (6 × 2)
(ci) (2683)₁₀ = (_10C_)₁₄

$$\frac{14}{2}\frac{268}{16}$$
 Reminer ' 12:C
 $\frac{14}{16}$ Reminer ' 12:C

AE54/AC54/AT54

LINEAR ICs & DIGITAL ELECTRONICS


Citi)
$$(39,12)_{10} = (-)_2$$

 $2 | 39 | Reminde
 $2 | 9 | 1 (168) = 0.12 \times 22 = 0.24 = 0^{116}$
 $2 | 9 | 1 (168) = 0.12 \times 22 = 0.24 = 0^{116}$
 $2 | 9 | 1 = 0.18 \times 22 = 0.148 = 0$
 $0.18 \times 22 = 0.148 = 0$
 $0.18 \times 22 = 0.148 = 0$
 $0.18 \times 22 = 0.148 = 0$
 $1 = 0 = 1$
 $(100101], 000 11 ...)$
 $(100101], 000 11 ...)$
 $(100101], 000 11 ...)$
 $(100101], 000 11 ...)$
 $(100101], 000 11 ...)$
 $(100101], 000 11 ...)$
 $(100101], 000 11 ...)$
 $(100101], 000 11 ...)$
 $(100101], 000 11 ...)$
 $(100101], 000 11 ...)$
 $(100101 10], 101 100 1 ...)$
 $(100101 10], 101 100 1 ...) = (115.54) g$$

www.StudentBounty.com Homework Help & Pastpapers

LINEAR ICs & DIGITAL ELECTRONICS **AE54/AC54/AT54**

a. Why NAND and NOR gates are called universal gates? **Q.7** Answer: 3.12 of Text Book II

- b. Prove that the given identity $Y = \overline{A + B}$ represents a NOR logic.
- StudentBounty.com c. (i) Draw the logic circuit for the given identity $Y = ABC + \overline{ABC} + B$ (ii) Simplify the expression and draw a logic circuit for the same.

LINEAR ICs & DIGITAL ELECTRONICS AE54/AC54/AT54

Q.8 a. What is Priority encoder? Draw & explain the truth table of decimal to BCD priority encoder.

Answer: Page Number 593 of Text Book

StudentBounty.com b. Design a Full Adder Circuit consisting of three inputs A, B, C_{IN} and two outputs S, C_{OUT}.

Answer: Page Number 320 of Text Book

- Q.9 a. Write short notes on:-
 - (i) NAND gate latch
 - (ii) Clocked D FF

Answer: 9.8 & 5.4 of Text Book

Text Books

1. Linear Integrated Circuits, Revised Second Edition, D Roy Choudhury, Shail B. Jain, New Age International Publishers.

2. Digital Systems - Principles and Applications, Ninth Edition, Ronald J Tocci, Neal S Widmer and Gregory L. Moss, Pearson Education, 2008.