PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions, selecting at least TWO questions from each part, each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. Karnaugh Map uses \qquad
(A) Binary Code
(B) Grey Code
(C) BDC Code
(D) Both (A) and (B)
b. For impedance matching application, OP-AMP is used as a \qquad
(A) Voltage Follower
(B) Voltage Clamper
(C) Voltage Clipper
(D) Voltage Multiplier
c. An Integrated Circuit which consists of $10^{6}-10^{7}$ transistors / chip is called as
(A) Medium Scale Integration
(B) Large Scale Integration
(C) Very Large Scale Integration
(D) Ultra Large Scale Integration
d. The output voltage $\left(\mathrm{V}_{\mathrm{o}}\right)$ for the OP-AMP circuit of Fig. 1 is \qquad
(A) $\mathrm{Vo}=\mathrm{V}_{3}-\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right)$
(B) $\mathrm{Vo}=\mathrm{V}_{3}+\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right)$
(C) $\mathrm{Vo}=-\mathrm{V}_{3}+\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right)$
(D) $\mathrm{Vo}=-\mathrm{V}_{3}-\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right)$

Fig. 1
e. For which of the following flip-flops, the output is clearly defined for the combinations of two inputs \qquad
(A) D type flip-flop
(B) R-S flip-flop
(C) J-K flip-flop
(D) None of these
f. For the circuit of Fig.2, the input resistance $\mathrm{R}_{\text {id }}$ will be \qquad

Fig. 2
(A) $2 \mathrm{R}_{1}$
(B) $2 \mathrm{R}_{1}+\mathrm{R}_{2}$
(C) $2\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$
(D) Infinity
g. The number of states in its counting sequence that a Ring Counter consisting of ' n ' flip-flops is \qquad
(A) $+2^{\mathrm{n}-1}$
(B) 2^{n+1}
(C) n
(D) $n-1$
h. A one-to-sixteen demultiplexer requires \qquad
(A) 2 select input lines
(B) 3 select input lines
(C) 8 select input lines
(D) 4 select input lines
i. The A/D converter which has maximum speed of conversion is \qquad
(A) Successive-approximation A/D converter
(B) Parallel-comparative A/D converter
(C) Counter ramp A/D converter
(D) Dual-slope A/D converter
j. Boolean Algebra states that the "OR ing of several variables results in the same regardless of the grouping of the variables" is called \qquad
(A) Commutative Property
(B) Associative Property
(C) Distributive Property
(D) All of these

PART (A)

Answer At least TWO questions. Each question carries 16 marks.
Q. 2 a. Enlist the various advantages of IC over discrete component circuits.
b. Draw basic differential amplifier and discuss transfer characteristics of an ideal operational amplifier.
c. Design an amplifier with a gain of +5 using one OP-AMP
Q. 3 a. State non-ideal DC characteristics of an op-amp. Explain any two of them
b. (i) Define Slew Rate of an op-amp
(ii) What causes the Slew Rate
(iii) How Slew Rate is measured
(iv) Can IC 741C be used for high frequency application?
Q. 4 a. Draw the characteristics of an ideal comparator and that of a commercially available comparator. Also list different types of comparators.
b. Explain the following in detail using OP-AMP, assuming 1-V peak to peak square wave as input signal for
(i) Positive clipper
(ii) Negative Clamper
c. State the applications of a precision diode.
Q. 5 a. Describe the operation of an Astable multivibrator using 555 timer.
b. Calculate the values of LSB, MSB and full scale output for an 8-bit DAC for the 0 to 10 V range.
c. What is a voltage regulator? State only name of the circuits that are used to make a regulated power supply.
(2)

PART (B)

Answer At least TWO questions. Each question carries 16 marks.
Q. 6 a. Differentiate between positive logic and negative logic.
b. Perform the following conversions:
(i) $(110011011001)_{2}=($ \qquad) 10
(ii) $(268)_{10}=\left(_\right)_{16}$
(iii) $\left.(39.12)_{10}=(\square)\right)_{2} \quad$ (iv) $(1054)_{8}=(\square)_{10}$
(vi) $(1001101.1011)_{2}=($ \qquad
Q. 7 a. Why NAND and NOR gates are called universal gates?
b. Prove that the given identity $\mathrm{Y}=\overline{\mathrm{A}+\mathrm{B}}$ represents a NOR logic.
c. (i) Draw the logic circuit for the given identity $\mathrm{Y}=\mathrm{ABC}+\overline{\mathrm{ABC}}+\mathrm{B}$
(ii) Simplify the expression and draw a logic circuit for the same.
Q. 8 a. What is Priority encoder? Draw \& explain the truth table of decimal to BCD priority encoder.
b. Design a Full Adder Circuit consisting of three inputs $\mathrm{A}, \mathrm{B}, \mathrm{C}_{\mathrm{IN}}$ and two outputs S, C ${ }_{\text {OUT }}$.
Q. 9 a. Write short notes on:-
(i) NAND gate latch
(ii) Clocked D FF
(2×4)
b. If data 1101 is fed into 4 bit Serial In / Serial Out Shift Register, show the status of register at various clock pulses.
c. State one advantage and one disadvantage of synchronous counter over asynchronous counter.
(2)

