Code: AE54/AC54/AT54

Subject: LINEAR ICs & DIGITAL ELE

ROLL NO.

AMIETE - ET/CS/IT

Time: 3 Hours

DECEMBER 2013

StudentBounty.com PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Ouestion 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions, selecting at least TWO questions from each part, each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following: (2×10)

a. Karnaugh Map uses _____

(A) Binary Code (C) BDC Code

(B) Grev Code (D) Both (A) and (B)

b. For impedance matching application, OP-AMP is used as a _____

(A) Voltage Follower (C) Voltage Clipper

(B) Voltage Clamper (D) Voltage Multiplier

c. An Integrated Circuit which consists of $10^6 - 10^7$ transistors / chip is called as

- (A) Medium Scale Integration (C) Very Large Scale Integration
- (B) Large Scale Integration

(D) Ultra Large Scale Integration

d. The output voltage (V_0) for the OP-AMP circuit of Fig.1 is _____ V₀ (A) $Vo = V_3 - (V_1 + V_2)$ **(B)** $Vo = V_3 + (V_1 + V_2)$ (C) $Vo = -V_3 + (V_1 + V_2)$ **(D)** $Vo = -V_3 - (V_1 + V_2)$ R

AE54/AC54/AT54 / DECEMBER - 2013

1

AMIETE - ET/CS/IT

Code: AE54/AC54/AT54 Subject: LINEAR ICs & DIGITAL ELE

studentBounty.com e. For which of the following flip-flops, the output is clearly defined for the combinations of two inputs _____

(A) D type flip-flop (C) J-K flip-flop

(**B**) R-S flip-flop (D) None of these **ROLL NO.**

f. For the circuit of Fig.2, the input resistance R_{id} will be _____

g. The number of states in its counting sequence that a Ring Counter consisting of 'n' flip-flops is ____

$(A) + 2^{n-1}$	(B) 2^{n+1}
(C) n	(D) n-1

h. A one-to-sixteen demultiplexer requires

(A) 2 select input lines	(B) 3 select input lines
(C) 8 select input lines	(D) 4 select input lines

- i. The A/D converter which has maximum speed of conversion is _____
 - (A) Successive-approximation A/D converter (B) Parallel-comparative A/D converter (C) Counter ramp A/D converter
 - (D) Dual-slope A/D converter
- j. Boolean Algebra states that the "OR ing of several variables results in the same regardless of the grouping of the variables" is called _____
 - (A) Commutative Property (C) Distributive Property

(B) Associative Property (**D**) All of these

PART (A) Answer At least TWO questions. Each question carries 16 marks.

AE54/AC54/AT54 / DECEMBER - 2013

2

AMIETE - ET/CS/IT

Code: AE54/AC54/AT54 Subject: LINEAR ICs & DIGITAL ELE

de: A	E5	4/AC54/AT54 Subject: LINEAR ICs & DIGITAL ELE	210
Q.2	a.	Enlist the various advantages of IC over discrete component circuits.	an ()
	b.	Draw basic differential amplifier and discuss transfer characteristics of a ideal operational amplifier.	an (8)
	c.	Design an amplifier with a gain of +5 using one OP-AMP	(4)
Q.3	a.	State non-ideal DC characteristics of an op-amp. Explain any two of the in detail.	em (8)
	b.	 (i) Define Slew Rate of an op-amp (ii) What causes the Slew Rate (iii) How Slew Rate is measured (iv) Can IC 741C be used for high frequency application? 	(4×2)
Q.4	a.	Draw the characteristics of an ideal comparator and that of a commercial available comparator. Also list different types of comparators.	ully (6)
	b.	Explain the following in detail using OP-AMP, assuming 1-V peak square wave as input signal for (i) Positive clipper (ii) Negative Clamper	to peak (2×4)
	c.	State the applications of a precision diode.	(2)
Q.5	a.	Describe the operation of an Astable multivibrator using 555 timer.	(8)
	b.	Calculate the values of LSB, MSB and full scale output for an 8-bit D the 0 to 10V range.	AC for (6)
	c.	What is a voltage regulator? State only name of the circuits that are make a regulated power supply.	used to (2)
		PART (B) Answer At least TWO questions. Each question carries 16 marks.	
Q.6	a.	Differentiate between positive logic and negative logic.	(4)
	b.	Perform the following conversions: (i) $(110011011001)_2 = (___]_{10}$ (ii) $(268)_{10} = (__]_{16}$ (iii) $(39.12)_{10} = (__]_2$ (iv) $(1054)_8 = (__]_{10}$ (v) $(2040.125)_{10} = (__]_{16}$ (vi) $(1001101.1011)_2 = (__]_8$	(6×2)
Q.7	a.	Why NAND and NOR gates are called universal gates?	(6)
	b.	Prove that the given identity $Y = \overline{A + B}$ represents a NOR logic.	(4)
	c.	(i) Draw the logic circuit for the given identity $Y = ABC + \overline{ABC} + B$ (ii) Simplify the expression and draw a logic circuit for the same.	(2×3)
Q.8	a.	What is Priority encoder? Draw & explain the truth table of decimal to priority encoder.	BCD (8)

AE54/AC54/AT54 / DECEMBER - 2013

AMIETE - ET/CS/IT

om

3

Subject: LINEAR ICs & DIGITAL ELE Code: AE54/AC54/AT54

studentBounty.com b. Design a Full Adder Circuit consisting of three inputs A, B, C_{IN} and two outputs S, C_{OUT}.

ROLL NO.

- Q.9 a. Write short notes on:-(i) NAND gate latch (ii) Clocked D FF (2×4)
 - b. If data 1101 is fed into 4 bit Serial In / Serial Out Shift Register, show the status of register at various clock pulses. (6)
 - c. State one advantage and one disadvantage of synchronous counter over asynchronous counter. (2)