Code: AC68 Subject: FINITE AUTOMATA & FORMULA LANG

AMIETE – CS

Time: 3 Hours

DECEMBER 2013

Max. Marks: 100

 (2×10)

ROLL NO.

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
- Q.1 Choose the correct or the best alternative in the following:
 - a. If $S = \{11\}$, then S^+ is:

(A) $S = \{11, 1111, 111111, \dots\}$	(B) $S = \{\land, 11, 1111,\}$
(C) $S = \{1, 111, 1111, \dots\}$	(D) $S = \{11, 111, 1111,\}$

b. Which of the following productions are regular:

$(\mathbf{A}) \mathbf{S} \to \mathbf{Aa} \mid \mathbf{Sab}$	$(\mathbf{B}) \mathbf{S} \to \mathbf{aS} \mid \mathbf{b}$
(C) $S \rightarrow bAa \mid Sa$	(D) $S \rightarrow bAa \mid bS$

c. The language generated by the production set $P = \{ S \rightarrow aSb \mid ab \}$ is:

$(\mathbf{A}) \mathbf{L} = \{ \mathbf{a}^{n} \mathbf{b}^{n} \mid n \ge 0 \}$	(B) $L = \{a^n b^{n+1} \mid n \ge 0\}$
(C) $L = \{a^n b^n \mid n \ge 1\}$	(D) $L = \{a^{n+1}b^n \mid n \ge 0\}$

d. According to Arden's theorem if P, Q and R are regular expressions then the solution of the equation R = Q + R.P is given by:

$(\mathbf{A}) \mathbf{R} = \mathbf{P}\mathbf{Q}^*$	$(\mathbf{B}) \mathbf{R} = \mathbf{P}\mathbf{Q}^+$
$(\mathbf{C}) \mathbf{R} = \mathbf{P}^* \mathbf{Q}^*$	$(\mathbf{D}) \mathbf{R} = \mathbf{Q}\mathbf{P}^*$

e. Which one of the following is *not* a regular expression:

(A) $[(0+1)^{+} + (0a+1b)^{+}]$	(B) $[(0+1)^{+} + (0a^{+} + b)]$
(C) $[(0+1)^* - (0a+1b)^*]$	(D) $[(01)^* + (0a^* + 1b)^*]$

f. The complement of a regular set is :

(A) Not regular	(B) Regular
(C) Context free	(D) Context sensitive

g. If a non-deterministic automata has 3 states, then it's equivalent DFA will have states:

(A) 3	(B) 6
(C) 9	(D) 8

AC68 / DECEMBER - 2013

AMIETE - CS

Code: AC68 Subject: FINITE AUTOMATA & FORMULA LANG

StudentBounty.com h. Which of the following is *true* for recursively enumerable (RE) and recursi language (RL)

ROLL NO.

$(\mathbf{A})RE\subseteqRL$	$(\mathbf{B}) \mathrm{RL} \subseteq \mathrm{RE}$
(C) $RL \not\subset RE$	$(\mathbf{D}) \mathbf{RL} = \mathbf{RE}$

i. The halting problem of a Turing machine is:

(A) Decidable	(B) Semi-decidable
(C) Undecidable	(D) None of these

j. Which of the following grammar is said to be ambiguous?

(A) Type - 2	(B) Type - 3
(C) Type - 0	(D) Type - 1

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- a. Prove by mathematical induction $n^4 4n^2$ is divisible by 3 for $n \ge 0$. **Q.2** (8)
 - What is the need to study Automata Theory in computer science? (8) b.
- 0.3 Minimize the following DFA having state q_5 as final state: (10)a.

Present	Next State	
State	Input 0	Input 1
\mathbf{q}_0	\mathbf{q}_1	q ₂
\mathbf{q}_1	q ₃	q_4
q_2	q_5	q ₆
q ₃	q ₃	q_4
q_4	q ₅	q ₆
q ₅	q ₃	q_4
q_6	q_5	q ₆

- b. Design a finite automata for the language $L = \{w | w \text{ is of even length and } w \in (a, b)\}$ $b)^{*}\}.$ (6)
- Q.4 a. Let $V_N = \{S, B\}, V_T = \{a, b\}, P = \{S \rightarrow aBa, B \rightarrow aBa, B \rightarrow b\}.$ Find the language L(G) generated by the given grammar. (8)
 - b. Obtain the NFA without epsilon transition corresponding to the following regular expression:

$$0^{*}1(0+10^{*}1)^{*}$$
 (8)

Q.5 a. Construct a regular expression corresponding to the state diagram given below (8)

AC68 / DECEMBER - 2013

StudentBounty.com Code: AC68 Subject: FINITE AUTOMATA & FORMULA LANG

ROLL NO.

b. Consider the following productions representing regular grammar G,

$$S \rightarrow aA \mid a$$

 $A \rightarrow aA \mid aB \mid a$
 $B \rightarrow bB \mid c$

Find the regular expression corresponding to regular grammar G. (8)

- a. Construct a PDA to accept strings containing equal number of 0's and 1's 0.6 by null store. Show the moves of the PDA for the input string '011001'. (10)
 - b. What is ambiguity? Show that $S \rightarrow aS \mid Sa \mid a$ is an ambiguous grammar. (6)
- 0.7 a. What are applications of pumping lemma in Chomsky's normal form? Convert the given grammar into Chomsky's Nf. $S \rightarrow ASB, A \rightarrow aAS \mid a, B \rightarrow SbS \mid bB$ (8)
 - b. Find a reduced grammar equivalent to $G = (V_N, \Sigma, P, S)$ where set P is given as follows:

$$S \rightarrow AB, A \rightarrow a, B \rightarrow b \mid C, D \rightarrow c$$
 (8)

- **Q.8** a. Design a Turing machine that recognizes all strings of even length over $\Sigma = (a, b)^*$ (8)
 - b. Write short note on universal Turing machine. (8)
- Q.9 a. Prove that if a language L and it's complement L' are both recursively enumerable, then L is recursive. (8)
 - b. Define Post corresponding Problem (PCP). Check whether the following instance has no solution over $\Sigma = \{0, 1\}$. X and Y be the lists of the three strings as follows: (8)

	List A	List B
i	Wi	Xi
1	1	111
2	10111	10
3	10	0
3		0

AC68 / DECEMBER - 2013