AMIETE - CS

Time: 3 Hours

DECEMBER 2013

Max. Marks: 100
PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. If $S=\{11\}$, then S^{+}is:
(A) $S=\{11,1111,111111, \ldots .$.
(B) $S=\{\wedge, 11,1111, \ldots\}$
(C) $S=\{1,111,1111, \ldots .$.
(D) $S=\{11,111,1111, \ldots\}$
b. Which of the following productions are regular:
(A) $\mathrm{S} \rightarrow \mathrm{Aa} \mid \mathrm{Sab}$
(B) $\mathrm{S} \rightarrow \mathrm{aS} \mid \mathrm{b}$
(C) $\mathrm{S} \rightarrow \mathrm{bAa} \mid \mathrm{Sa}$
(D) $\mathrm{S} \rightarrow \mathrm{bAa} \mid \mathrm{bS}$
c. The language generated by the production set $\mathrm{P}=\{\mathrm{S} \rightarrow \mathrm{aSb} \mid \mathrm{ab}\}$ is:
(A) $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}$
(B) $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}+1} \mid \mathrm{n} \geq 0\right\}$
(C) $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mid \mathrm{n} \geq 1\right\}$
(D) $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}+1} \mathrm{~b}^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}$
d. According to Arden's theorem if P, Q and R are regular expressions then the solution of the equation $R=Q+R . P$ is given by:
(A) $\mathrm{R}=\mathrm{PQ}{ }^{*}$
(B) $\mathrm{R}=\mathrm{PQ}^{+}$
(C) $R=P^{*} Q^{*}$
(D) $\mathrm{R}=\mathrm{QP}^{*}$
e. Which one of the following is not a regular expression:
(A) $\left[(0+1)^{*}+(0 a+1 b)^{*}\right]$
(B) $\left[(0+1)^{*}+\left(0 a^{*}+b\right)\right]$
(C) $\left[(0+1)^{*}-(0 a+1 b)^{*}\right]$
(D) $\left[(01)^{*}+\left(0 \mathrm{a}^{*}+1 \mathrm{~b}\right)^{*}\right]$
f. The complement of a regular set is :
(A) Not regular
(B) Regular
(C) Context free
(D) Context sensitive
g. If a non-deterministic automata has 3 states, then it's equivalent DFA will have states:
(A) 3
(B) 6
(C) 9
(D) 8
h. Which of the following is true for recursively enumerable (RE) and recursin language (RL)
(A) $R E \subseteq R L$
(B) $\mathrm{RL} \subseteq \mathrm{RE}$
(C) $\mathrm{RL} \not \subset \mathrm{RE}$
(D) $R L=R E$
i. The halting problem of a Turing machine is:
(A) Decidable
(B) Semi-decidable
(C) Undecidable
(D) None of these
j. Which of the following grammar is said to be ambiguous?
(A) Type - 2
(B) Type - 3
(C) Type - 0
(D) Type - 1

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q. 2 a. Prove by mathematical induction $n^{4}-4 n^{2}$ is divisible by 3 for $n \geq 0$.
b. What is the need to study Automata Theory in computer science?
Q. 3 a. Minimize the following DFA having state q_{5} as final state:

Present	Next State	
State	Input 0	Input 1
q_{0}	q_{1}	q_{2}
q_{1}	q_{3}	q_{4}
q_{2}	q_{5}	q_{6}
q_{3}	q_{3}	q_{4}
q_{4}	q_{5}	q_{6}
q_{5}	q_{3}	q_{4}
q_{6}	q_{5}	q_{6}

b. Design a finite automata for the language $L=\{w \mid w$ is of even length and $w \in(a$, b) ${ }^{*}$.
(6)
Q. 4 a. Let $V_{N}=\{S, B\}, V_{T}=\{a, b\}, P=\{S \rightarrow a B a, B \rightarrow a B a, B \rightarrow b\}$. Find the language $\mathrm{L}(\mathrm{G})$ generated by the given grammar.
(8)
b. Obtain the NFA without epsilon transition corresponding to the following regular expression:

$$
\begin{equation*}
0^{*} 1\left(0+10^{*} 1\right)^{*} \tag{8}
\end{equation*}
$$

Q. 5 a. Construct a regular expression corresponding to the state diagram given below

b. Consider the following proauctions representing reguiar grammar G ,

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aA} \mid \mathrm{a} \\
& \mathrm{~A} \rightarrow \mathrm{aA}|\mathrm{aB}| \mathrm{a} \\
& \mathrm{~B} \rightarrow \mathrm{bB} \mid \mathrm{c}
\end{aligned}
$$

Find the regular expression corresponding to regular grammar G.
Q. 6 a. Construct a PDA to accept strings containing equal number of 0 's and 1 's by null store. Show the moves of the PDA for the input string ' 011001 '.
b. What is ambiguity? Show that $\mathrm{S} \rightarrow \mathrm{aS}|\mathrm{Sa}| \mathrm{a}$ is an ambiguous grammar.
Q. 7 a. What are applications of pumping lemma in Chomsky's normal form? Convert the given grammar into Chomsky's Nf.
$\mathrm{S} \rightarrow \mathrm{ASB}, \mathrm{A} \rightarrow \mathrm{aAS}|\mathrm{a}, \mathrm{B} \rightarrow \mathrm{SbS}| \mathrm{bB}$
b. Find a reduced grammar equivalent to $G=\left(V_{N}, \Sigma, P, S\right)$ where set P is given as follows:

$$
\begin{equation*}
\mathrm{S} \rightarrow \mathrm{AB}, \mathrm{~A} \rightarrow \mathrm{a}, \mathrm{~B} \rightarrow \mathrm{~b} \mid \mathrm{C}, \mathrm{D} \rightarrow \mathrm{c} \tag{8}
\end{equation*}
$$

Q. 8 a. Design a Turing machine that recognizes all strings of even length over $\Sigma=(\mathrm{a}, \mathrm{b})^{*}$
b. Write short note on universal Turing machine.
Q. 9 a. Prove that if a language L and it's complement L^{\prime} are both recursively enumerable, then L is recursive.
b. Define Post corresponding Problem (PCP). Check whether the following instance has no solution over $\Sigma=\{0,1\}$. X and Y be the lists of the three strings as follows:

	List A	List B
i	w_{i}	x_{i}
1	1	111
2	10111	10
3	10	0

