
AC55/AT55 OBJECT ORIENTED PROGRAMMING WITH C++ DEC 2013

© IETE 1

Q.2 a. Discuss the fundamental features of the object oriented programming.
Answer:
The fundamentals features of the OOPs are the following:

(i) Encapsulation: It is a mechanism that associates the code and data it
manipulates into a single unit and keeps them safe from external interference
and misuse. In C++, this is supported by a construct called class.

(ii) Data Abstraction: The technique of creating new data types that are well
suited to an application to be programmed is known as data abstraction. It
provides the ability to create user-defined data types, for modeling a real
world object, having the properties of built-in data types and a set of permitted
operators. The class is a construct in C++ for creating user-defined data types
call abstract data types (ADTs).

(iii) Inheritance: It allows the extension and reuse of exiting code without having
to rewrite the code from scratch. Inheritance involves the creation of new
classes (called derived classes) from the existing ones (called base classes),
thus enabling the creation of a hierarchy of classes that simulates the class and
subclass of the real world.

(iv) Multiple Inheritance: The mechanism by which a class is derived from than
one base class is known as multiple inheritance.

(v) Polymorphism: It allows a single name / operator to be associated with
different operations depending on the type of data passed to it. In C++, it is
achieved by function overloading, operator overloading and dynamic binding
(virtual functions).

(vi) Message Passing: It is the process of invoking an operation on an object. In
response to a message, the corresponding method (function) is executed in the
object.

(vii) Extensibility: It is a feature, which allows the extension of the functionality
of the existing software components. In C++, this is achieved through abstract
class and inheritance.

(viii) Genericity: It is a technique for defining software components that have more
than one interpretation depending on the data types of parameters. In C++,
genericity is realized through function templates and class templates.

 b. What is the advantage of a sizeof() operator?
Answer: Page Number 16 of Text Book

 c. Explain the difference between:
 (i) ‘A’ and “A”
 (ii) a = b and a == b
 (iii) a & b and a & & b
Answer:
The notations ‘A’ and “A” have an important difference. The first one (‘A’) is a character
constant while the second (“A”) is a string constant. The notation ‘A’ is a constant
occupying a single byte containing the ASCII code of character A. The notation “A” on
the other hand, is a constant that occupies two bytes, one for the ASCII code of A and the
other for the null character with value 0, that terminates all strings.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

AC55/AT55 OBJECT ORIENTED PROGRAMMING WITH C++ DEC 2013

© IETE 2

Q.3 a. Explain the use of break statement in switch-case statement.
Answer:
The switch Statement
The switch and case statements help control complex conditional and branching
operations. The switch statement transfers control to a statement within its body. The
syntax for switch statement is as follows

selection-statement :
switch (expression) statement
labeled-statement :
case constant-expression : statement
default : statement

Control passes to the statement whose case constant-expression matches the value of
switch (expression). The switch statement can include any number of case instances, but
no two case constants within the same switch statement can have the same value.
Execution of the statement body begins at the selected statement and proceeds until the
end of the body or until a break statement transfers control out of the body. Use of the
switch statement usually looks something like this:

switch (expression)
{
 declarations
 .
 . .
 case constant-expression :
 statements executed if the expression equals the
 value of this constant-expression
 .
 .
 . break;
 default :
 statements executed if expression does not equal
 any case constant-expression
}
We can use the break statement to end processing of a particular case within the
switch statement and to branch to the end of the switch statement. Without
break, the program continues to the next case, executing the statements until a
break or the end of the statement is reached. In some situations, this continuation
may be desirable.
The default statement is executed if no case constant-expression is equal to the
value of switch (expression). If the default statement is omitted, and no case
match is found, none of the statements in the switch body are executed. There can
be at most one default statement. The default statement need not come at the
end; it can appear anywhere in the body of the switch statement. In fact it is often
more efficient if it appears at the beginning of the switch statement. A case or
default label can only appear inside a switch statement.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

AC55/AT55 OBJECT ORIENTED PROGRAMMING WITH C++ DEC 2013

© IETE 3

The type of switch expression and case constant-expression must be integral. The
value of each case constant-expression must be unique within the statement body.
The case and default labels of the switch statement body are significant only in
the initial test that determines where execution starts in the statement body.
Switch statements can be nested. Any static variables are initialized before
executing into any switch statements.

The following examples illustrate switch statements:
switch(c)
{
 case 'A':
 capa++;
 case 'a':
 lettera++;
default :
 total++;
}

All three statements of the switch body in this example are executed if c is equal
to 'A' since a break statement does not appear before the following case.
Execution control is transferred to the first statement (capa++;) and continues in
order through the rest of the body. If c is equal to 'a', lettera and total are
incremented. Only total is incremented if c is not equal to 'A' or 'a'.

switch(i) {
 case -1:
 n++;
break;
 case 0 :
 z++;
 break;
 case 1 :
 p++;
 break;
}

In this example, a break statement follows each statement of the switch body.
The break statement forces an exit from the statement body after one statement is
executed. If i is equal to 1, only n is incremented. The break following the
statement n++; causes execution control to pass out of the statement body,
bypassing the remaining statements. Similarly, if i is equal to 0, only z is
incremented; if i is equal to 1, only p is incremented. The final break statement is
not strictly necessary, since control passes out of the body at the end of the
compound statement.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

AC55/AT55 OBJECT ORIENTED PROGRAMMING WITH C++ DEC 2013

© IETE 4

 b. Write the syntax for accessing structure members in C++. Also construct a
structure called “Student” whose members are roll_no, name, branch and
marks. Use this structure in your program that will read student
information and then display that information.

Answer:
C++ provides the period or dot(.) operator to access the members of a structure . The dot
operator connects a structure variable and its member. The syntax for accessing members
of a structure variable is as follows:

 structvar.membername

Here, structvar is a structure variable and membername is one of the member of structure.
Thus, the dot operator must have a structure variable on its left and a member name on its
right.

#include <iostream.h>

struct Student {
 int roll_no;
 char name[25];
 char branch[10];
 int marks;
};

void main() {
 Student s1;
 cout << “Enter data for student” << endl;
 cout << “Roll Number” ;
 cin >> s1.roll_no;
 cout << “Name” ;
 cin >> s1.name;

cout << “Branch” ;
 cin >> s1.branch;

cout << “Marks Obtained” ;
 cin >> s1marks;

 cout << “ Student Report” << endl;
 cout << “Roll Number :” << s1.roll_no << endl;
 cout << “Name :” << s1.name << endl;

cout << “Branch :” << s1.branch << endl;
cout << “Marks Obtained :” << s1.marks << endl;

}

 c. Write some situations where the usage of pointers is required.
Answer:

The usage of pointer is essential in the following situations:

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

AC55/AT55 OBJECT ORIENTED PROGRAMMING WITH C++ DEC 2013

© IETE 5

• Accessing array elements.
• Passing arguments to functions by address when modification of formal

arguments is to be reflected on actual arguments.
• Passing arrays and strings to functions
• Creating data structures such as linked lists, trees, graphs, etc.
• Obtaining memory from the system dynamically.
•

Q.4 a. Define Inline function. What are the guidelines that need to be followed
for deciding if the function is to be used as a member function or inline
function?

Answer:
Inline function: If a member function is define as well declared, in the definition of the
class itself, the member function is said to be defined inline.

Following are the certain guidelines need to be followed while declaring a member
function as inline function:

(i) Defining inline functions can be considered once a fully developed and tested
program too slowly and shows bottlenecks in certain functions.

(ii) Inline functions can be used when member functions consist of one very
simple statement such as the return statement. For example,
inline int date :: getday() {
 return day;
}

(iii) If a function is too large to be expanded, it will not be treated be treated as
inline. Thus, declaring a function will not guarantee that the compiler will
consider it as an inline function.

(iv) Functions consisting of loops will not be considered as inline functions.

 b. What are the conditions that must be satisfied for function calling?
Answer:
The following conditions must be satisfied for a function call:

• The number of arguments in the unction call and the function declaratory must be
same.

• The data type of each of the arguments in the function call should be the same as
the corresponding parameter in the function declaratory statement. However, the
names of the arguments in the function call and the parameters in the function
definition can be different.

 c. What is function overloading? Write overloading functions for swapping
two character, two integer and two float parameters.

Answer:
Function overloading is a concept that allows multiple functions to share the same name
with different argument types. Function overloading implies that the function definition
can have multiple forms. Assigning one or more function body to the same name is
known as function overloading or function name overloading.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

AC55/AT55 OBJECT ORIENTED PROGRAMMING WITH C++ DEC 2013

© IETE 6

#include <iostream.h>
void swap(char &x, char &y) {
 char t;
 t = x;
 x = y;
 y = t;
}

void swap(int &x, int &y) {
 int t;
 t = x;
 x = y;
 y = t;
}

void swap(float &x, float &y) {
 float t;
 t = x;
 x = y;
 y = t;
}

void main() {
 char ch1, ch2,
 cout << “Enter two characters :”;
 cin >> ch1 >> ch2;
 swap(ch1, ch2);
 cout << “After Swapping characters :” << ch1 << “ ” <<ch2 << endl;

 int in1, in2,
 cout << “Enter two integers :”;
 cin >> in1 >> in2;
 swap(in1, in2);
 cout << “After Swapping integers :” << in1 << “ ” <<in2 << endl;

 float fl1, fl2,
 cout << “Enter two floats :”;
 cin >> fl1 >> fl2;
 swap(fl1, fl2);
 cout << “After Swapping floats :” << fl1 << “ ” <<fl2 << endl;
}

 Q.5 a. Design a class to represent “account” information of an individual that

 includes following members:-

 Data Members

• Name of account holder -------- String
• Account number ---------- int
• Type of Account --------- char

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

AC55/AT55 OBJECT ORIENTED PROGRAMMING WITH C++ DEC 2013

© IETE 7

• Balance Amount ---------- float
 Member Functions

• To assign initial values (using constructor)
• To display the name of account holder, account number, account type and

balance amount in the account.
• To deposit an amount in the account.
• To withdraw an amount.

 Use the above class to write an interactive program.
Answer:
include<iostream.h>
include<conio.h>
include<iomanip.h>
class bank {
 char name[20];
 int acno;
 char actype[4];
 float balance;
 public:
 void init();
 void deposit();
 void withdraw();
 void disp_det();
 };
//member functions of bank class
void bank :: init(){

cout<<" New Account
;
cout<<"Enter the Name of the depositor : ";
cin.get(name,19,'');
cout<<"Enter the Account Number : ";
cin>>acno;
cout<<"Enter the Account Type : (CURR/SAVG/FD/RD/DMAT) ";
cin>>actype;
cout<<"Enter the Amount to Deposit : ";
cin >>balance;

}
void bank :: deposit(){

float more;
cout <<"Depositing
;
cout<<"Enter the amount to deposit : ";
cin>>more;
balance+=more;

}
void bank :: withdraw(){

float amt;
cout<<" Withdrwal
;
cout<<"Enter the amount to withdraw : ";

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

AC55/AT55 OBJECT ORIENTED PROGRAMMING WITH C++ DEC 2013

© IETE 8

cin>>amt;
balance-=amt;

}
void bank :: disp_det(){

cout<<" Account Details
;
cout<<"Name of the depositor : "<<name<<endl;
cout<<"Account Number : "<<acno<<endl;
cout<<"Account Type : "<<actype<<endl;
cout<<"Balance : $"<<balance<<endl;

}
// main function , exectution starts here
void main(){

clrscr();
bank obj;
int choice =1;
while (choice != 0){

cout<<"Enter 0 to exit
 1. Initialize a new acc.
 2. Deposit
 3.Withdraw
 4.See A/c Status";

cin>>choice;
switch(choice){

 case 0 :obj.disp_det();
 cout<<"EXITING PROGRAM.";
 break;
 case 1 : obj.init();
 break;
 case 2: obj.deposit();
 break;
 case 3 : obj.withdraw();
 break;
 case 4: obj.disp_det();
 break;
 default: cout<<"Illegal Option"<<endl;

}
}
getch();

}

 b. Why is destructor function required in a class? What are the special rules

that should be considered while defining a destructor function for a class?
Answer:

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

AC55/AT55 OBJECT ORIENTED PROGRAMMING WITH C++ DEC 2013

© IETE 9

Destructor: A destructor is used to destroy the objects that have been created by a
constructor. It has the same name as that of the class but is preceded by a tilde. For
example,
~class_name () {}
The following rules need to be considered while defining a destructor for a given class:

• The destructor function has the same name as the class but prefixed by a tilde (~).
The tilde distinguishes it from a constructor of the same class.

• Unlike the constrictor, the destructor does not take any arguments. This is because
there is only one way to destroy an object.

• The destructor has neither arguments, nor a return value.
• The destructor has no return type like constructor, since it is invoked

automatically whenever an object goes out of scope.
• There can be only one destructor in each class.

 Q.6 a. Write the steps that involves the process of operator overloading.
Answer:
The process of operator overloading generally involves the following steps:

1. Declare a class (that defines the data type) whose objects are to be manipulated
using operators.

2. Declare the operator function, in the public part of the class. It can be either a
normal member function or a friend function.

3. Define the operator function either within the body of a class or outside the body
of the class (however, the function prototype must exist inside the class body).

 b. Give the syntax for overloading a binary operator. Write a program to
overload the binary operator + in order to perform addition of complex
numbers.

Answer:
The syntax for overloading a binary operator is as follows

 returntype operator OperatorSymbol (arg) {

 // body of Operator function

 }

The keyword operator facilitates overloading of the C++ operators. The keyword
operator indicates that the OperatorSymbol following it, is the C++ operator to be
overloaded to operate on members of its class. The operator overloaded in a class is know
as overloaded operator function.

For examples,
 complex operator + (complex c1);

 int operator – (int a);

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

AC55/AT55 OBJECT ORIENTED PROGRAMMING WITH C++ DEC 2013

© IETE 10

The following program illustrates the overloading of the binary operator + in order to perform
addition of complex numbers.

#include (iostream.h>
class complex {
 private :
 float real;
 float imag;
 public :
 complex() {
 real = imag = 0.0;
 }

 void getdata() {
 cout << “Enter Real Part :”;
 cin >> real;
 cout << “Enter Imaginary Part :”;
 cin >> imag;
 }

 complex operator + (complex c) ;

 void outdata (char *msg) {
 cout << endl << msg;
 cout << “(” << real;
 cout << “, ” << imag << “)”;
 }
}

complex complex :: operator + (complex c) {
 complex temp;
 temp.real = real + c.real;
 temp.imag = imag + c.imag;
 retrun (temp);
}

void main () {

 complex c1, c2, c3;
 cout << “ Enter Complex Number c1 -----” << endl;
 c1.getdata();
 cout << “ Enter Complex Number c2 -----” << endl;
 c2.getdata();

 c3 = c1 + c2;

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

AC55/AT55 OBJECT ORIENTED PROGRAMMING WITH C++ DEC 2013

© IETE 11

 c3.outdata(“ c3 = c1 + c2: ”);
}

 c. Is it possible to overload the ternary (? :) operator? Support your answer

with proper reason.
Answer:
No, it is not possible to overload the ternary (? :) operator.
The ternary (? :) operator has an inherent meaning and it requires three arguments. C++
does not support the overloading of an operator, which operates on three operands.
Hence, the conditional operator, which is the only ternary operator in C++ language,
cannot be overloaded.

Q.7 a. Explain the term Polymorphism. What are the different forms of

polymorphism?
Answer:
The technique to allow a single name / operator to be associated with different operations
depending on the type of data passed to it is known as Polymorphism. In C++, it is
achieved through function overloading, operator overloading and dynamic binding
(virtual functions).

Polymorphism is a very powerful concept that allows the design of flexible applications.
The word Polymorphism is derived from two Greek words, Poly means many and
morphos means forms. So, Polymorphism means ability to take many forms.
Polymorphism can be defined as one interface multiple methods which means that one
interface can be used to perform different but related activities.

The different form of Polymorphism is

• Compile time (or static) polymorphism.
• Runtime (or Dynamic) polymorphism.

Compile Time Polymorphism
In compile time polymorphism, static binding is performed. In static binding, the
compiler makes decision regarding selection of appropriate function to be called in
response to function call at compile time. This is because all the address information
requires to call a function is known at compile time. It is also known as early binding as
decision of binding is made by the compiler at the earliest possible moment. The compile
time polymorphism is implemented in C++ using function overloading and operator
overloading. In both cases, the compiler has all the information about the data type and
number of arguments needed, so it can select the appropriate function at compile time.
The advantage of static binding is its efficiency, as it often requires less memory and
function calls are faster. Its disadvantage is the lack of flexibility.
Runtime Polymorphism
In runtime polymorphism, dynamic binding is performed. In dynamic binding, the
decision regarding the selection of appropriate function to be called is made by the
compiler at run time and not at compile time. This is because the information pertaining

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

AC55/AT55 OBJECT ORIENTED PROGRAMMING WITH C++ DEC 2013

© IETE 12

to the selection of the appropriate function definition corresponding to a function a call is
only known at run time. It is also known as late binding as the compiler delays the
binding decision until run time. In C++, the runtime polymorphism is implemented using
virtual functions.
The advantage of dynamic binding is that it allows greater flexibility by enabling user to
create class libraries that can be reused and extended as per requirements. It also provides
a common interface in the base class for performing multiple tasks whose implementation
is present in the derived classes. The main disadvantage of dynamic binding is that there
is little loss of execution speed, as compiler will have to perform certain overheads at run
time.

When virtual functions are used for implementing run time polymorphism, there are
certain rules to be followed:

• When a virtual function in a base class is created, there must be a definition of the
virtual function in the base class even base class version of the function is never
actually called.

• They cannot be static members
• They can be a friend function to another class
• They are accessed using object pointers.
• A base pointer can server as a pointer to a derived object since it is type-

compatible whereas a derived object pointer variable cannot serve as a pointer to
base objects.

• Its prototype in a base class and derived class must be identical for the virtual
function to work properly.

• The class cannot have virtual constructors, but can have virtual destructor.
• To realize the potential benefits of virtual functions supporting runtime

polymorphism, they should be declared in the public section of a class.

 b. Explain the difference between inheriting a class with public and private

visibility mode.
Answer:
The syntax of declaring a derived class from base class is as follows:
 class DerivedClass : [VisibilityMode} BaseClass {
 // members of derived class
 // and they can access members of the base class
 };
The derivation of Derivedclass from the BaseClass is indicated by colon (:). The
VisibilityMode enclosed within the square brackets implies that is optional. The default
visibility mode is private. If the visibility mode is specified, it must be either public or
private.

Inheritance of a base class with visibility mode public, by a derived class, causes public
members of the base class to become public members of the derived class and the
protected members of the base class become protected members of the derived class.
Member functions and objects of the derived class can treat these derived members as
though they are defined in the derived class itself. It is known that the public members of

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

AC55/AT55 OBJECT ORIENTED PROGRAMMING WITH C++ DEC 2013

© IETE 13

a class can be accessed by the objects of the class. Hence, the objects of a derived class
can access public members of the base class that are inherited as public using dot
operator. However, protected members cannot be accessed with dot operator.

Inheritance of a base class with visibility mode private, by a derived class, causes public
members of the base class to become private members of the derived class and the
protected members of the base class become private members of the derived class.
Member functions and objects of the derived class can treat these derived members as
though they are defined in the derived class with the private modifier. Thus, objects of a
derived class cannot access these members.

The private members of the base class remain private to the derived class, whether the
base class in inherited publicly or privately, they add to the data items of the derived class
but are not accessible to the member of a derived class. Derived classes can access them
through the inherited member functions of the base class.

Q.8 a. Write a program using function template to find the cube of a given

integer, float and a double number.
Answer:

//Using a function template

#include <iostream.h>
template < class T >
T cube(T value1) {

return value1*value1*value1;

}
int main() {
 int int1;

 cout <<"Input integer value: ";
 cin >> int1;

 cout << "The cube of integer value is: "<< cube(int1);

 double double1;

 cout << "\nInput double value; ";
 cin >> double1;
 cout << "The cube of double value is: "<< cube(double1);

float float1;
 cout << "\nInput float value";
 cin >> float1;
 cout << "The cube of float value is: "<< cube(float1);

cout<< endl;

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

AC55/AT55 OBJECT ORIENTED PROGRAMMING WITH C++ DEC 2013

© IETE 14

 return 0;
}

 b. Create a class number to store an integer number and the member function

read() to read a number from console and the member function div() to
perform division operations. It raises exception if an attempt is made to
perform divide-by-zero operation. It has an empty class name DIVIDE used
as the throw’s expression-id.

 Write a C++ program to use these classes to illustrate the mechanism for
detecting errors, raising exceptions, and handling such exceptions.

Answer:
#include <iostream.h>
class number {
 private :
 int num;
 public :
 void read() { // read number from keyboard
 cin >> num;
 }
 class DIVIDE {}; // abstract class used in exceptions

 int div(number num2) {

if (num2.num == 0) // check for zero division if yes raise
exception

 throw DIVIDE();
else
 return num / num2.num; // compute and return the result

 }
};

int main() {

number num1, num2;
int result;

 cout << “Enter First Number : ”;
 num1.read;
 cout << “Enter Second Number: ”;
 num2.read();

 try {
 cout << “Trying division operation”;
 result = num1.div(num2);
 cout << result << endl;
 } catch (number::DIVIDE) { // exception handler block
 cout << “Exception : Divide-By-Zero”;
 return 1;
 }

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

AC55/AT55 OBJECT ORIENTED PROGRAMMING WITH C++ DEC 2013

© IETE 15

 cout << “No Exception generated:”
 return 0;
}

Q.9 a. Write a C++ program to display the contents of a file on the console,

where filename is entered interactively.
Answer:
#include <fstream.h>
#include <iomanip.h>

int main() {
 char ch;

char filename[25];
cout << “Enter Name of the File:”;
cin >> filename;

// create a file object in read mode

ifstream ifile(filename);

if (!ifile) { // file open status
 cerr << “Error opening ” << filename << endl;
 return 1;
}

ifile >> resetiosflags (ios::skipws);

while(ifile) {
 ifile >> ch;
 cout << ch;
}
return 0;

}

 b. Explain the following:
(i) ifstream
(ii) ofstream

 (iii) fstream
 Answer:

 Answer

(i) ifstream
The header file ifstream.h is a derived class from the base class of istream and is used
to read a stream of objects from a file.
For example, the following program segment shows how a file is opened to read a
class of stream objects from a specified file.

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

AC55/AT55 OBJECT ORIENTED PROGRAMMING WITH C++ DEC 2013

© IETE 16

#include <fstream.h>
void main() {
 ifstream infile;
 infile.open(“file_name”);
 ……………
 ……………
}

(ii) ofstream
The header file ofstream.h is derived from the base class of ostream and is used to
write a stream of objects in a file.
For example, the following program segment shows how a file is opened to write a
class of stream objects on a specified file.
#include <fstream.h>
void main() {
 ofstream outfile;
 outfile.open(“file_name”);
 ……………
 ……………
}

(iii) fstream
The header file fstream.h is a derived class from the base class of iostream and is used
for both reading and writing a stream of objects on a file. The statement
#include<fstream.h> automatically includes the header file iostream.h
For example, the following program segment shows how a file is opened for both
reading and writing a class of stream objects from a specified file.
#include <fstream.h>
void main() {
 fstream infile;
 infile.open(“file_name” , ios::in || ios::out);
 ……………
 ……………
}
When a file is opened for both reading and writing, the I/O streams keep track of two
file pointers, one for input operation and other for output operation.

Text Book

C++ and Object-Oriented Programming Paradigm, Debasish Jana, Second Edition, PHI,
2005

http://www.studentbounty.com/
http://www.studentbounty.com
http://www.studentbounty.com

	The switch Statement

