ROLL NO.

Code: AE27 Subject: DIGITAL HARDWARE DES

AMIETE - ET (OLD SCHEME)

Time: 3 Hours OCTOBER 2012

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.

-		on carries 16 marks. quired data not explicitly given, n	nay be suitably assumed and st	ated.
Q.1	Choose the correct or the best alternative in the following:			(2×10)
	a.	Which is not a property of VHDL		
		 (A) Parallel language (B) Strongly typed language (C) Uses Implicit default sequen (D) Uses explicit time delays 	tial control flow	
	b.	Component instantiation is use in _	modeling	
		(A) Structural(C) Data flow	(B) Behavioral(D) High level model	
	c.	The signal assignment statement is denoted by the symbol		
		(A) '==' (C) '=>'	(D) '<='	
	d.	Pattern recognizer can be implemen		
		(A) Decoder(C) Mux/De-mux	(B) Counter(D) Shift register	
	e.	c. Operators belong to of data subsystem.		
		(A) Functional module(C) Storage module	(B) Data paths(D) Conditional points	
	f.	has no AND gates.		
		(A) Coincident Decoder(C) Priority encoder	(B) Tree Decoder(D) Binary encoder	

Code: AE27

Subject: DIGITAL HARDWARE DES

- g. PLA is a combinational module that provides
 - (A) NOT-AND-XNOR
- (B) NOT-AND-OR
- (C) NOT-AND-NOR
- (D) NOT-AND-XOR
- SHILDENT BOUNTS, COM h. In tabular representation of switching functions, an integer j is associated with each n-tuple. For *n-tuple* j is defined as
 - (A) $j = \sum_{i=0}^{n-1} x_i 2^{i+1}$

(B) $j = \sum_{i=0}^{n} x_i 2^i$

(C) $j = \sum_{i=0}^{n-1} x_i 2^i$

- **(D)** $j = \sum_{i=0}^{n-1} x_i 2^{i-1}$
- Microcontroller design can be represented using
 - (A) state machine

(B) activity chart

(C) flow chart

- (**D**) micro machine
- A data path is said to be _____ if it connects a unique source and destination.
 - (A) Indirected

(B) Directed

(C) Erected

(D) Dedicated

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- **Q.2** a. Explain data representation and coding in digital systems. Give an example for each. **(6)**
 - b. Design a BCD-to-Excess-3 code converter using basic gates.
- **(5)**
- Explain the features of Computer Aided Design tools in digital systems.
 - **(5)**

0.3 Use Boolean algebra to prove the following:

$$a'b' + ab + a'b = a' + b$$

(5)

- b. Mention limitations of two-level networks in combinational systems.
 - **(5)**

- c. Write short notes for the following:
 - (i) Serial Binary Adder.
 - (ii) Threshold switching function.

- **(6)**
- **Q.4** a. Write a program in VHDL to implement the following ALU operations:
 - (i) Add

(ii) Subtract

(iii) Multiply

(iv) Divide

(6)

Student Bounty.com Code: AE27 Subject: DIGITAL HARDWARE DES

b. Explain the behavioral and structural modeling in VHDL.

Explain delta delay and transport delay in VHDL.

- **(5)**
- **Q.5** a. Explain the role of multiplexer as a Universal Combinational Module.
 - b. Give the representation of n-bit register and mention its applications. Label data and control signals in a *n-bit* register. **(6)**
 - c. Compare PAL and GAL devices. **(5)**
 - a. Explain hazards and race in asynchronous sequential machines. Give an 0.6 illustration. **(7)**
 - b. Design a two input, two output sequence detector to detect a sequence 0101. (6)
 - c. Mention the features of flow table reduction in asynchronous sequential machines. **(3)**
 - 0.7 a. Design data subsystem for to displaying values from 1 to 10. Draw the relevant block diagram with data and control signals. **(7)**
 - b. Compare the features of microprogrammed controller with respect to controller implemented on a fixed network. **(5)**
 - c. Give an example to illustrate horizontal and vertical encoding in control fields of microinstruction. **(4)**
 - a. Determine the minimal state table that is equivalent to the following: **(5)** 0.8

Input				
PS	x = 0	x = 1		
а	f, 0	b, 0		
b	d,0	c , 0		
c	f, 0	e, 0		
d	<i>g</i> ,1	<i>a</i> , 0		
e	d,0	<i>c</i> , 0		
f	f, 1	<i>b</i> , 1		
g	g,0	h, 1		
h	<i>g</i> ,1	<i>a</i> , 0		
NS, z				

- b. Explain the working of asynchronous sequential machine and give its representation. **(6)**
- c. Explain the role of functional decomposition in combinational systems. **(5)**

ROLL NO.

SHILDENT BOUNTS, COM Code: AE27 Subject: DIGITAL HARDWARE DES

a. Write short notes from any **THREE** of the following: **Q.9**

- (i) Microprogrammed Controller
- (ii) Storage modules of a Data subsystem
- (iii) Process statement in VHDL
- (iv) Programmable Sequential Arrays

 $(3 \times 4 = 12)$

b. Give an example to illustrate multiple output switching function and their minimization.