Code: AE25 Subject: PHYSICAL ELECTRONICS AND SOLID STA

AMIETE - ET (OLD SCHEME)

Time: 3 Hours

OCTOBER 2012

STA

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.

Cl	hoose the correct or the best altern	ative in the following:
a.	MOSFET can be used as a	
	(A) current controlled capacitor(C) current controlled inductor	(B) voltage controlled capacitor(D) voltage controlled inductors
b.	The early effect in a bipolar junction transistor is caused by	
	(A) fast turn-on(C) large collector-base reverse bis	(B) fast turn-off as(D) large emitter-base forward bias
c.	Which of the following is not associ	ciated with a p-n junction?
	(A) channel length modulation(C) depletion capacitance	(B) charge storage capacitance(D) junction capacitance
d.	The MOSFET switch in its on-state may be considered equivalent to	
	(A) resistor(C) capacitor	(B) inductor(D) battery
e.	Fermi level for extrinsic semiconductor depends on	
	(A) Donor element(C) Temperature	(B) Impurity concentration(D) All
f.	Which of the following materials is not a semiconductor?	
	(A) Silicone.(C) Gallium arsenide.	(B) Germanium.(D) Gallium nitride.
g.	Energy band gap size for Si semiconductors is in the rangeeV.	
	(A) 1-2 (C) 3-4	(B) 2-3 (D) > 4

Code: AE25 Subject: PHYSICAL ELECTRONICS AND SOLID STA

- Student Bounty Com Which type of special-purpose diode has the characteristics of a voltage controlled capacitor?
 - (A) varactor diode.
- **(B)** tunnel diode.

(C) zener diode.

- **(D)** Schottky diode.
- i. Flow of electrons is affected by the following
 - (A) Thermal vibrations
- **(B)** Impurity atoms
- (C) Crystal defects
- **(D)** all
- A Zener diode is based on the principle of:
 - (A) Thermionic emission
 - (B) Tunneling of charge carriers across the junction
 - (C) Diffusion of charge carriers across the junction
 - **(D)** None of the above

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- **Q.2** a. Describe the impact ionization process where a high energy conductionband electron scatters from a valence-band electron, producing two conduction-band electrons and a hole. **(8)**
 - b. A sample of Si is doped with 10^{17} phosphorus atoms/cm³. What would you expect to measure for its resistivity? What Hall voltage would you expect sample 100µm thick if $I_{\rm v} = 1 \, \rm mA$ and

$$B_z = 1KG = 10^{-5} \text{ wb/cm}^2$$
 (8)

- a. When a heavily doped junction is reverse biased, the energy bands become **Q.3** crossed at relatively low voltages, explain it by characteristics curves. **(8)**
 - b. Describe and design an ohmic contact for n-type GaAs using InAs, with an intervening graded InGaAs region. **(8)**
- 0.4 a. Explain briefly the switching operation of a transistor. **(8)**
 - List and explain BJT static performance parameters. (8)
- **Q.5** Discuss the output characteristics of the MOS field effect transistor. **(8)**
 - b. Consider an aluminium-SiO₂ -Si MOS device. The work function of Al is 4.1eV, the electron affinity for SiO₂ is 0.9eV, and that of Si is 4.15 eV. Calculate the potential V_{fb} if the Si doping is $N_a = 10^{14} \text{ cm}^{-3}$. **(8)**
- Briefly explain the principle and applications of semiconductor lasers. **Q.6 (8)**
 - b. Write a brief about the characteristics of microwave transistor. **(8)**

AE25 / OCTOBER - 2012

2

AMIETE - ET (OLD SCHEME)

ROLL NO.

Code: AE25 Subject: PHYSICAL ELECTRONICS AND SOLID STANCES

Q.7 Write a brief note on the evolution of IC technology and the role of testing, bonding and packaging into IC fabrication. (16)

- Q.8 a. The production of a voltage difference across an electrical conductor, transverse to an electric current in the conductor and a magnetic field perpendicular to the current. Derive the effect with diagram. (8)
 - b. State and derive Einstein's relation in the carrier dynamics of semi conductors. (8)
- **Q.9** Write short notes on any **TWO**:
 - (i) Schottky barriers
 - (ii) Kirk effect
 - (iii) Charge transfer device
 - (iv) Solar cells (2×8)